[1] Zhou, M.; Li, Q.; Wang, R.X. Current experimental methods for characterizing protein-protein interactions. ChemMedChem. 2016, 11, 738-756.
[2] Renaud, J.P.; Chung, C.W.; Helena Danielson, U.; Egner, U.; Hennig, M.; Hubbard, R.E.; Nar, H. Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 2016, 15, 679.
[3] Ma, W.N.; Yang, L.; He, L.C. Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J. Pharm. Anal. 2018, 8, 147-152.
[4] U.S. Pharmacopeia. The United States Pharmacopeial Convention. 2016, USP39, 1272-1288.
[5] The Japanese Pharmacopoeia. Pharmaceutical and Medical Device Regulatory Science Society of Japan. 2016, JP17, 2474-2478.
[6] The Chinese Pharmacopoeia. Chinese Medical Science and Technology Press. 2020, 3429, 339-340.
[7] McDonnell, J.M. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 2001, 5, 572-577.
[8] Chavanieu, A.; Pugnière, M. Developments in SPR fragment screening. Expert. Opin. Drug Discov. 2016, 11, 489-499.
[9] Patching, S.G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta. 2014, 1838, 43-55.
[10] Miura, K. An overview of current methods to confirm protein-protein interactions. Protein Pept. Lett. 2018, 25, 728-733.
[11] Willander, M.; Al-Hilli, S. Analysis of biomolecules using surface plasmons. Micro Nano Technol. Bioanal. 2009, 544, 201-229.
[12] Cai, S.D.; Yan, J.H.; Xiong, H.J.; Liu, Y.F.; Peng, D.M.; Liu, Z.B. Investigations on the interface of nucleic acid aptamers and binding targets. Anal. 2018, 143, 5317-5338.
[13] Genick, C.C.; Wright, S.K. Biophysics: for HTS hit validation, chemical lead optimization, and beyond. Expert. Opin. Drug Discov. 2017, 12, 897-907.
[14] Pang, Y.; Gou, M.; Yang, K.; Lu, J.L.; Han, Y.L.; Teng, H.M.; Li, C.Z.; Wang, H.N.; Liu, C.G.; Zhang, K.J.; Yang, Y.L.; Li, Q.W. Crystal structure of a cytocidal protein from lamprey and its mechanism of action in the selective killing of cancer cells. Cell Commun. Signal. 2019, 17, 54.
[15] Chan, J.F.W.; Yuan, S.F.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.F.; Liu, J.L.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.L.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020, 395, 514-523.
[16] Wrapp, D.; Wang, N.S.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. BioRxiv. 2020, doi:10.1101/2020.02.11.944462.
[17] Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020, 579, 270.
[18] Lan, J.; Ge, J.W.; Yu, J.F.; Shan, S.S.; Zhou, H.; Fan, S.L.; Zhang, Q.; Shi, X.L.; Wang, Q.S.; Zhang, L.Q.; Wang, X.Q. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020, 581, 215-220.
[19] Choi, Y.; Nam, J.; Whitcomb, D.J.; Song, Y.S.; Kim, D.; Jeon, S.; Um, J.W.; Lee, S.G.; Woo, J.; Kwon, S.K.; Li, Y.; Mah, W.; Kim, H.M.; Ko, J.; Cho, K.; Kim, E. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci. Rep. 2016, 6, 26676.
[20] Lin, Z.H.; Liu, J.M.; Ding, H.D.; Xu, F.; Liu, H.L. Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Nat. Commun. 2018, 9, 268.
[21] Jiao, Q.S.; Wang, R.F.; Jiang, Y.Y.; Liu, B. Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chem. Central J. 2018, 12, 1-20.
[22] Cao, Y.; Li, Y.H.; Lv, D.Y.; Chen, X.F.; Chen, L.D.; Zhu, Z.Y.; Chai, Y.F.; Zhang, J.P. Identification of a ligand for tumor necrosis factor receptor from Chinese herbs by combination of surface plasmon resonance biosensor and UPLC-MS. Anal. Bioanal. Chem. 2016, 408, 5359-5367.
[23] Xiao, S.L.; Si, L.L.; Tian, Z.Y.; Jiao, P.X.; Fan, Z.B.; Meng, K.; Zhou, X.S.; Wang, H.; Xu, R.Y.; Han, X.; Fu, G.; Zhang, Y.M.; Zhang, L.H.; Zhou, D.M. Pentacyclic triterpenes grafted on CD cores to interfere with influenza virus entry: a dramatic multivalent effect. Biomaterials. 2016, 78, 74-85.
[24] Löfås, S. Optimizing the hit-to-lead process using SPR analysis. Assay Drug Dev. Technol. 2004, 2, 407-415.
[25] Gorgulla, C.; Boeszoermenyi, A.; Wang, Z.F.; Fischer, P.D.; Coote, P.W.; Padmanabha Das, K.M.; Malets, Y.S.; Radchenko, D.S.; Moroz, Y.S.; Scott, D.A.; Fackeldey, K.; Hoffmann, M.; Iavniuk, I.; Wagner, G.; Arthanari, H. An open-source drug discovery platform enables ultra-large virtual screens. Nature. 2020, 580, 663.
[26] Andersson, K.; Karlsson, R.; Löfås, S.; Franklin, G.; Hämäläinen, M.D. Label-free kinetic binding data as a decisive element in drug discovery. Expert. Opin. Drug Discov. 2006, 1, 439-446.
[27] Markgren, P.O.; Schaal, W.; Hämäläinen, M.; Karlén, A.; Hallberg, A.; Samuelsson, B.; Danielson, U.H. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J. Med. Chem. 2002, 45, 5430-5439.
[28] Zhang, X.S.; Chen, J.H.; Weng, Z.B.; Li, Q.R.; Zhao, L.; Yu, N.; Deng, L.; Xu, W.; Yang, Y.; Zhu, Z.P.; Huang, H.M. A new anti-HER2 antibody that enhances the anti-tumor efficacy of trastuzumab and pertuzumab with a distinct mechanism of action. Mol. Immunol. 2020, 119, 48-58.
[29] Ditto, N.T.; Brooks, B.D. The emerging role of biosensor-based epitope binning and mapping in antibody-based drug discovery. Expert. Opin. Drug Discov. 2016, 11, 925-937.
[30] Jung, S.K.; Lee, K.H.; Jeon, J.W.; Lee, J.W.; Kwon, B.O.; Kim, Y.J.; Bae, J.S.; Kim, D.I.; Lee, S.Y.; Chang, S.J. Physicochemical characterization of Remsima. mAbs. 2014, 6, 1163-1177.
[31] Chen, L.X.; Wang, L.; Shion, H.; Yu, C.F.; Yu, Y.Q.; Zhu, L.; Li, M.; Chen, W.B.; Gao, K. In-depth structural characterization of Kadcyla® (ado-trastuzumab emtansine) and its biosimilar candidate. mAbs. 2016, 8, 1210-1223.
[32] Danho, W.; Swistok, J.; Khan, W.; Chu, X.J.; Cheung, A.; Fry, D.; Sun, H.; Kurylko, G.; Rumennik, L.; Cefalu, J.; Cefalu, G.; Nunn, P. Opportunities and challenges of developing peptide drugs in the pharmaceutical industry. Adv. Exp. Med. Biol. 2009, 611, 467-469.
[33] Diao, L.; Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet. 2013, 52, 855-868.
[34] Pan, H.C.; Xie, Y.N.; Lu, W.Y.; Chen, Y.; Lu, Z.; Zhen, J.; Wang, W.W.; Shang, A.Q. Engineering an enhanced thrombin-based GLP-1 analog with long-lasting glucose-lowering and efficient weight reduction. RSC Adv. 2019, 9, 30707-30714.
[35] Yang, G.R.; Zhao, X.L.; Jin, F.; Shi, L.H.; Yang, J.K. Pharmacokinetics and pharmacodynamics of a polyethylene glycol (PEG)-conjugated GLP-receptor agonist once weekly in Chinese patients with type 2 diabetes. J. Clin. Pharmacol. 2015, 55, 152-158.
[36] Kroenke, M.A.; Weeraratne, D.K.; Deng, H.J.; Sloey, B.; Subramanian, R.; Wu, B.; Serenko, M.; Hock, M.B. Clinical immunogenicity of the d-amino acid peptide therapeutic etelcalcetide: Method development challenges and anti-drug antibody clinical impact assessments. J. Immunol. Methods. 2017, 445, 37-44.
[37] Shibata, H.; Nishimura, K.; Miyama, C.; Tada, M.; Suzuki, T.; Saito, Y.; Ishii-Watabe, A. Comparison of different immunoassay methods to detect human anti-drug antibody using the WHO erythropoietin antibody reference panel for analytes. J. Immunol. Methods. 2018, 452, 73-77.
[38] Gassner, C.; Lipsmeier, F.; Metzger, P.; Beck, H.; Schnueriger, A.; Regula, J.T.; Moelleken, J. Development and validation of a novel SPR-based assay principle for bispecific molecules. J. Pharm. Biomed. Anal. 2015, 102, 144-149.
[39] Ma, G.Z.; Syu, G.D.; Shan, X.N.; Henson, B.; Wang, S.P.; Desai, P.J.; Zhu, H.; Tao, N.J. Measuring ligand binding kinetics to membrane proteins using virion nano-oscillators. J. Am. Chem. Soc. 2018, 140, 11495-11501.
[40] Zhao, S.; Yang, M.; Zhou, W.F.; Zhang, B.C.; Cheng, Z.Q.; Huang, J.X.; Zhang, M.; Wang, Z.Y.; Wang, R.; Chen, Z.L.; Zhu, J.S.; Li, H.T. Kinetic and high-throughput profiling of epigenetic interactions by 3D-carbene chip-based surface plasmon resonance imaging technology. Proc. Natl. Acad. Sci. USA. 2017, 114, E7245-E7254. |