[1] Giddings, J.C. A new separation concept based on a coupling of concentration and flow nonuniformities. Sep. Sci. 1966, 1, 123-125.
[2] Schachermeyer, S.; Ashby, J.; Zhong, W.W. Advances in field-flow fractionation for the analysis of biomolecules: instrument design and hyphenation. Anal. Bioanal. Chem. 2012, 404, 1151-1158.
[3] Reschiglian, P.; Zattoni, A.; Roda, B.; Michelini, E.; Roda, A. Field-flow fractionation and biotechnology. Trends Biotechnol. 2005, 23, 475-483.
[4] Roda, B.; Zattoni, A.; Reschiglian, P.; Moon, M.H.; Mirasoli, M.; Michelini, E.; Roda, A. Field-flow fractionation in bioanalysis: A review of recent trends. Anal. Chim. Acta. 2009, 635, 132-143.
[5] Mazanec, K.; Dycka, F.; Bobalova, J. Monitoring of barley starch amylolysis by gravitational field flow fractionation and MALDI-TOF MS. J. Sci. Food Agric. 2011, 91, 2756-2761.
[6] Chmelík, J.; Krumlová, A.; Budinská, M.; Kruml, T.; Psota, V.; Bohac̆enko, I.; Mazal, P.; Vydrová, H. Comparison of size characterization of barley starch granules determined by electron and optical microscopy, low angle laser light scattering and gravitational field-flow fractionation. J. Inst. Brew. 2001, 107, 11-17.
[7] Guo, S.; Qiu, B.L.; Zhu, C.Q.; Yang, Y.G.; Wu, D.; Liang, Q.H.; Han, N.Y. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1031, 1-7.
[8] Cardot, P.J.P.; Gerota, J.; Martin, M. Separation of living red blood cells by gravitational field-flow fractionation. J. Chromatogr. B Biomed. Sci. Appl. 1991, 568, 93-103.
[9] Urbánková, E.; Vacek, A.; Chmelík, J. Micropreparation of hemopoietic stem cells from the mouse bone marrow suspension by gravitational field-flow fractionation. J. Chromatogr. B Biomed. Appl. 1996, 687, 449-452.
[10] Bernard, A.; Bories, C.; Loiseau, P.M.; Cardot, P.J. Selective elution and purification of living Trichomonas vaginalis using gravitational field-flow fractionation. J. Chromatogr. B Biomed. Appl. 1995, 664, 444-448.
[11] Sanz, R.; Torsello, B.; Reschiglian, P.; Puignou, L.; Galceran, M.T. Improved performance of gravitational field-flow fractionation for screening wine-making yeast varieties. J. Chromatogr. A. 2002, 966, 135-143.
[12] Sanz, R.; Battu, S.; Puignou, L.; Galceran, M.T.; Cardot, P.J. Sonication effect on cellular material in sedimentation and gravitational field flow fractionation. J Chromatogr. A. 2003, 1002, 145-154.
[13] Garcia, M.T.; Sanz, R.; Galceran, M.T.; Puignou, L. Use of fluorescent probes for determination of yeast cell viability by gravitational field-flow fractionation. Biotechnol. Prog. 2006, 22, 847-852.
[14] Janousková, J.; Budinská, M.; Plocková, J.; Chmelík, J. Optimization of experimental conditions for the separation of small and large starch granules by gravitational field-flow fractionation. J. Chromatogr. A. 2001, 914, 183-187.
[15] Reschiglian, P.; Zattoni, A.; Casolari, S.; Krumlova, A.; Budinska, M.; Chmelík, J. Size characterization of barley starch granules by gravitational field-flow fractionation: a rapid, low-cost method to assess the brewing capability of different strains. Ann. Chim. 2002, 92, 457-467.
[16] Chmelík, J.; Mazanec, K.; Bohačenko, I.; Psota, V. Relationship between the ratio of large and small starch granules determined by gravitational field-flow fractionation and malting quality of barley varieties. J. Liq. Chromatogr. Relat. Technol. 2007, 30, 1289-1301.
[17] Huang, H.H. Master. thesis, Tianjin University. 2016.
[18] Nara, S.; Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch. 1983, 35, 407-410.
[19] Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant Starch? A review. Comp. Rev. Food Sci. Food Safety. 2006, 5, 1-17.
[20] McCormick, K.M.; Panozzo, J.F.; Hong, S.H. A swelling power test for selecting potential noodle quality wheats. Aust. J. Agric. Res. 1991, 42, 317.
[21] Zobel, H.F. Starch crystal transformations and their industrial importance. Starch. 1988, 40, 1-7.
[22] Gallant, D.J.; Bouchet, B.; Baldwin, P.M. Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, 177-191.
[23] Kossmann, J.; Lloyd, J. Understanding and influencing starch biochemistry. Crit. Rev. Plant Sci. 2000, 19, 171-226.
[24] Gao, Y.; Liang, Q.H. ; Song, Y.; Zou, Y; Shu, L.; Han, N.Y. Separation and Characterization of Five Kinds of Medicinal Starches by Gravitational Field-Flow Fractionation (GrFFF). Chin. Pharm. J. 2019, 54, 65-73.
[25] Qiu, B.L.; Wu, D.; Guo, S.; Zhu, C.Q.; Gaoyang, Y.Y.; Liang, Q.H.; Gao, Y.; Song, Y.; Han, N.Y. Optimization of experimental conditions for the separation of polystyrene particles by gravitational field-flow fractionation. Chin. J. Chromatogr. 2017, 35, 216-221.
[26] Guo, S.; Zhu, C.Q.; Gao-Yang, Y.Y.; Qiu, B.L.; Wu, D.; Liang, Q.H.; He, J.Y.; Han, N.Y. Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation. Chin. J. Chromatogr. 2016, 34, 146-151. |