中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (11): 859-873.DOI: 10.5246/jcps.2021.11.074
• 【研究论文】 • 下一篇
蔡雪妮1, 富戈1, Martin Lepšík2, Emanuele Paci3, 郭媛4,*(), 李中军1,*(), 李庆1,*()
收稿日期:
2021-04-18
修回日期:
2021-05-09
接受日期:
2021-08-25
出版日期:
2021-11-28
发布日期:
2021-11-28
通讯作者:
郭媛, 李中军, 李庆
作者简介:
基金资助:
Xueni Cai1, Ge Fu1, Martin Lepšík2, Emanuele Paci3, Yuan Guo4,*(), Zhongjun Li1,*(), Qing Li1,*()
Received:
2021-04-18
Revised:
2021-05-09
Accepted:
2021-08-25
Online:
2021-11-28
Published:
2021-11-28
Contact:
Yuan Guo, Zhongjun Li, Qing Li
摘要:
DC-SIGN是星形细胞特异性C-型凝集素受体, 在诸如HIV, Ebola等多种病毒早期感染阶段起着重要作用, 因而可能成为有价值的治疗靶标。研究发现, DC-SIGN可以识别高甘露糖结构以及含有岩藻糖分支的寡糖。据此, 合成了一系列新型的具有结构多样性的同形及甘露糖-岩藻糖杂合糖簇, 并采用表面等离子共振技术(SPR)对此类化合物进行了DC-SIGN胞外结构域四聚体的结合活性测试。结果表明, 杂合糖簇17b显示了较高的DC-SIGN结合活性 (KD = 2.6 μM)。采用分子对接的方法, 以低活性的异构体17a为对照, 对17b的活性进行了结构因素方面的评价与解释。17b可能作为基础用于研发DC-SIGN依赖的病毒感染抑制剂。
Supporting:
蔡雪妮, 富戈, Martin Lepšík, Emanuele Paci, 郭媛, 李中军, 李庆. 一系列新型同形及杂合糖簇的合成及DC-SIGN结合活性研究[J]. 中国药学(英文版), 2021, 30(11): 859-873.
Xueni Cai, Ge Fu, Martin Lepšík, Emanuele Paci, Yuan Guo, Zhongjun Li, Qing Li. Synthesis of a series of novel homo- and hetero-glycoclusters and their binding activities to DC-SIGN[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 859-873.
Scheme 1. Synthesis of compounds 2, 3, 6 and 7. Reagents and conditions: (a) NIS, TfOH, DCM, –20 °C, 1 h, 60% or 62% for 2 or 6, 36% or 30% for 3 or 7 respectively.
Scheme 2. Synthesis of glycoclusters 9, 11, 13a, 13b, 15a, 15b, 17a and 17b. Reagents and conditions: (b) CuI, DIPEA, toluence, R.T. (24 h); (c) CuSO4?5H2O, Na ascorbate, THF?H2O (1:1, v/v), 55 °C (6 h), R.T. (18 h); (d) MeONa, MeOH, R.T. (24 h); (e) Pd/C, H2, MeOH?EA (1:1, v/v), R.T. (24 h).
Figure 3. Comparison of the crystal structure of DC-SIGN CRD with GlcNAc-Man-Man-Man-GlcNAc pentasaccharide (PDB code 1K9I)[13] and modeled structure with ligands 17b and 17a. A, B and C are detailed structural Ca2+ coordination by ligands: bidentate coordination by O3 and O4 oxygens of GlcNAc-Man-Man-Man-GlcNAc as observed in the crystal structure (A), potential bidentate coordination by O3 and O2 oxygens of 17b (B), and strictly monodentate coordination by O2 oxygen of 17a (C) as obtained by docking (this work). D, E and F are the co-crystal structure of DC-SIGN CRD with GlcNAc-Man-Man-Man-GlcNAc[13] (D), and modeled structure of CRD complexed with 17b (E) or 17a (F). Colour coding: red-oxygen and green sphere-Ca2+. Hydrogen bonds are dotted. Figure rendered with PyMol[35]. In summary, docking of 17b and 17a suggested that the former compound was a potent binder of DC-SIGN because it effectively mimicked the binding of the GlcNAc-Man-Man-Man-GlcNAc pentasaccharide, in which it placed its three sugar units in analogous positions, including possible bidentate coordination of Ca2+ in the primary site.
[1] |
Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000, 18, 767–811.
|
[2] |
Kooyk, Y.V.; Engering, A.; Lekkerkerker, A.N.; Ludwig, I.S.; Geijtenbeek, T.B. Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr. Opin. Immunol. 2004, 16, 488–493.
|
[3] |
Geijtenbeek, T.B.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.; Adema, G.J.; van Kooyk, Y.; Figdor, C.G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000, 100, 575–585.
|
[4] |
Serrano-Gómez, D.; Sierra-Filardi, E.; Martínez-Nuñez, R.T.; Caparrós, E.; Delgado, R.; Muñoz-Fernández, M.A.; Abad, M.A.; Jimenez-Barbero, J.; Leal, M.; Corbí, A.L. Structural requirements for multimerization of the pathogen receptor dendritic Cell-specific ICAM3-grabbing Non-integrin (CD209) on the cell surface. J. Biol. Chem. 2008, 283, 3889–3903.
|
[5] |
Feinberg, H.; Guo, Y.; Mitchell, D.A.; Drickamer, K.; Weis, W.I. Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J. Biol. Chem. 2005, 280, 1327–1335.
|
[6] |
Mitchell, D.A.; Fadden, A.J.; Drickamer, K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. J. Biol. Chem. 2001, 276, 28939–28945.
|
[7] |
Geijtenbeek, T.B.H.; Kwon, D.S.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.F.; Middel, J.; Cornelissen, I.L.M.H.A.; Nottet, H.S.L.M.; KewalRamani, V.N.; Littman, D.R.; Figdor, C.G.; van Kooyk, Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000, 100, 587–597.
|
[8] |
Lozach, P.Y.; Lortat-Jacob, H.; de Lacroix de Lavalette, A.; Staropoli, I.; Foung, S.; Amara, A.; Houlès, C.; Fieschi, F.; Schwartz, O.; Virelizier, J.L.; Arenzana-Seisdedos, F.; Altmeyer, R. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem. 2003, 278, 20358–20366.
|
[9] |
Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muñiz, O.; Corbí, A.L.; Delgado, R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 2002, 76, 6841–6844.
|
[10] |
Geijtenbeek, T.B.; Van Vliet, S.J.; Koppel, E.A.; Sanchez-Hernandez, M.; Vandenbroucke-Grauls, C.M.; Appelmelk, B.; Van Kooyk, Y. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 2003, 197, 7–17.
|
[11] |
Tailleux, L.; Schwartz, O.; Herrmann, J.L.; Pivert, E.; Jackson, M.; Amara, A.; Legres, L.; Dreher, D.; Nicod, L.P.; Gluckman, J.C.; Lagrange, P.H.; Gicquel, B.; Neyrolles, O. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 2003, 197, 121–127.
|
[12] |
Guo, Y.; Feinberg, H.; Conroy, E.; Mitchell, D.A.; Alvarez, R.; Blixt, O.; Taylor, M.E.; Weis, W.I.; Drickamer, K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 2004, 11, 591–598.
|
[13] |
Feinberg, H. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 2001, 294, 2163–2166.
|
[14] |
Feinberg, H.; Castelli, R.; Drickamer, K.; Seeberger, P.H.; Weis, W.I. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J. Biol. Chem. 2007, 282, 4202–4209.
|
[15] |
Luczkowiak, J.; Sattin, S.; Sutkevičiu̅tė, I.; Reina, J.J.; Sánchez-Navarro, M.; Thépaut, M.; Martínez-Prats, L.; Daghetti, A.; Fieschi, F.; Delgado, R.; Bernardi, A.; Rojo, J. Pseudosaccharide functionalized dendrimers as potent inhibitors of DC-SIGN dependent Ebola pseudotyped viral infection. Bioconjugate Chem. 2011, 22, 1354–1365.
|
[16] |
Arnáiz, B.; Martínez-Ávila, O.; Falcon-Perez, J.M.; Penadés, S. Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjugate Chem. 2012, 23, 814–825.
|
[17] |
Dehuyser, L.; Schaeffer, E.; Chaloin, O.; Mueller, C.G.; Baati, R.; Wagner, A. Synthesis of novel mannoside glycolipid conjugates for inhibition of HIV-1 trans-infection. Bioconjugate Chem. 2012, 23, 1731–1739.
|
[18] |
Zhang, Q.; Su, L.; Collins, J.; Chen, G.S.; Wallis, R.; Mitchell, D.A.; Haddleton, D.M.; Becer, C.R. Dendritic cell lectin-targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. J. Am. Chem. Soc. 2014, 136, 4325–4332.
|
[19] |
Arosio, D.; Chiodo, F.; Reina, J.J.; Marelli, M.; Penadés, S.; van Kooyk, Y.; Garcia-Vallejo, J.J.; Bernardi, A. Effective targeting of DC-SIGN by α-fucosylamide functionalized gold nanoparticles. Bioconjugate Chem. 2014, 25, 2244–2251.
|
[20] |
Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015, 115, 525–561.
|
[21] |
Muñoz, A.; Sigwalt, D.; Illescas, B.M.; Luczkowiak, J.; Rodríguez-Pérez, L.; Nierengarten, I.; Holler, M.; Remy, J.S.; Buffet, K.; Vincent, S.P.; Rojo, J.; Delgado, R.; Nierengarten, J.F.; Martín, N. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 2016, 8, 50–57.
|
[22] |
Ribeiro-Viana, R.; Sánchez-Navarro, M.; Luczkowiak, J.; Koeppe, J.R.; Delgado, R.; Rojo, J.; Davis, B.G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat. Commun. 2012, 3, 1303.
|
[23] |
Guo, Y.; Nehlmeier, I.; Poole, E.; Sakonsinsiri, C.; Hondow, N.; Brown, A.; Li, Q.; Li, S.; Whitworth, J.; Li, Z.J.; Yu, A.C.; Brydson, R.; Turnbull, W.B.; Pöhlmann, S.; Zhou, D.J. Dissecting multivalent lectin–carbohydrate recognition using polyvalent multifunctional glycan-quantum dots. J. Am. Chem. Soc. 2017, 139, 11833–11844.
|
[24] |
Illescas, B.M.; Rojo, J.; Delgado, R.; Martín, N. Multivalent glycosylated nanostructures to inhibit Ebola virus infection. J. Am. Chem. Soc. 2017, 139, 6018–6025.
|
[25] |
Rodríguez-Pérez, L.; Ramos-Soriano, J.; Pérez-Sánchez, A.; Illescas, B.M.; Muñoz, A.; Luczkowiak, J.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Nanocarbon-based glycoconjugates as multivalent inhibitors of Ebola virus infection. J. Am. Chem. Soc. 2018, 140, 9891–9898.
|
[26] |
Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; de la Cruz, N.; Rodríguez-Pérez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Synthesis of highly efficient multivalent disaccharide/[60]fullerene nanoballs for emergent viruses. J. Am. Chem. Soc. 2019, 141, 15403–15412.
|
[27] |
Budhadev, D.; Poole, E.; Nehlmeier, I.; Liu, Y.; Hooper, J.; Kalverda, E.; Akshath, U.S.; Hondow, N.; Turnbull, W.B.; Pöhlmann, S.; Guo, Y.; Zhou, D. Glycan-gold nanoparticles as multifunctional probes for multivalent lectin-carbohydrate binding: implications for blocking virus infection and nanoparticle assembly. J. Am. Chem. Soc. 2020, 142, 18022–18034.
|
[28] |
Gómez-García, M.; Benito, J.M.; Rodríguez-Lucena, D.; Yu, J.X.; Chmurski, K.; Ortiz Mellet, C.; Gutiérrez Gallego, R.; Maestre, A.; Defaye, J.; García Fernández, J.M. Probing secondary Carbohydrate−Protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect. J. Am. Chem. Soc. 2005, 127, 7970–7971.
|
[29] |
Wolfenden, M.L.; Cloninger, M.J. Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. J. Am. Chem. Soc. 2005, 127, 12168–12169.
|
[30] |
Becer, C.R.; Gibson, M.I.; Geng, J.; Ilyas, R.; Wallis, R.; Mitchell, D.A.; Haddleton, D.M. High-affinity glycopolymer binding to human DC-SIGN and disruption of DC-SIGN interactions with HIV envelope glycoprotein. J. Am. Chem. Soc. 2010, 132, 15130–15132.
|
[31] |
Jiménez Blanco, J.L.; Ortiz Mellet, C.; García Fernández, J.M. Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chem. Soc. Rev. 2013, 42, 4518–4531.
|
[32] |
Li, Q.; Zhao, Y.T.; Meng, X.B.; Yan, T.T.; Li, S.C.; Huang, H.Q.; Zhao, Z.H.; Li, Z.J. Synthesis of two multivalent lactosides with anti-adhesive activity and their fluorescein-labeled and biotin-labeled derivatives. J. Chin. Pharm. Sci. 2011, 20, 325–334.
|
[33] |
Yao, W.; Xia, M.J.; Meng, X.B.; Li, Q.; Li, Z.J. Adaptable synthesis of C-lactosyl glycoclusters and their binding properties with galectin-3. Org. Biomol. Chem. 2014, 12, 8180–8195.
|
[34] |
Lepšík, M.; Field, M.J. Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations. J. Phys. Chem. B. 2007, 111, 10012–10022.
|
[35] |
The PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC.
|
[36] |
Case, D.A.; Babin, V.; Berryman, J.T.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham, T.E.; Darden, T.A.; Duke, R.E.; Gohlke, H.; Goetz, A.W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T.S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K.M.; Paesani, F.; Roe, D.R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C.L.; Smith, W.; Swails, J.; Walker; Wang, J.; Wolf, R.M.; Wu, X.; Kollman, P.A. Amber 14, University of California: San Francisco, 2014.
|
[37] |
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 2006, 65, 712–725.
|
[38] |
Kohagen, M.; Lepšík, M.; Jungwirth, P. Calcium binding to calmodulin by molecular dynamics with effective polarization. J. Phys. Chem. Lett. 2014, 5, 3964–3969.
|
[39] |
Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169.
|
[40] |
Sanner, M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61.
|
[41] |
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
|
[1] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[2] | 朱玉霞, 张玲建, 胡懿鸣, 刘卫华, 关丽萍, 林琳. 海洋中药厚藤中柚皮素(naringenin)衍生物合成及胆碱酯酶抑制活性研究[J]. 中国药学(英文版), 2023, 32(8): 636-644. |
[3] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[4] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[5] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[6] | 孙志勇, 高淑丽, 张阳, 薛刚强, 苑子林, 王少男. 基于网络药理学和分子对接技术研究蒲公英治疗乳腺增生的潜在机制[J]. 中国药学(英文版), 2023, 32(11): 893-910. |
[7] | 周代英, 陈靓, 吕志刚. 基于网络药理学和分子对接探讨灯盏细辛治疗年龄相关性黄斑变性的机制[J]. 中国药学(英文版), 2023, 32(11): 923-934. |
[8] | 丁宁, 张涛, 罗吉, 刘皓辰, 邓宇, 何永恒. 基于网络药理学和分子对接探究白芍七物汤治疗结直肠癌的作用机制[J]. 中国药学(英文版), 2023, 32(1): 17-31. |
[9] | 伊帕尔古丽·阿皮孜, 王昭志, 贺宏吉, 李喆喆, 王梅. 基于网络药理学和分子对接探讨骆驼蓬种子抗肝癌作用机制[J]. 中国药学(英文版), 2022, 31(7): 517-529. |
[10] | 孙遨, 李紫鹏, 刘婷, 孟祥豹, 李树春, 李中军. Kdo化学合成方法改进[J]. 中国药学(英文版), 2022, 31(2): 97-107. |
[11] | 商燕, 蔺晓源, 张田田, 谢丽华, 胡国恒. 基于网络药理学和分子对接探讨益气活血方抗脑缺血机制研究[J]. 中国药学(英文版), 2022, 31(2): 117-133. |
[12] | 都晓辉, 杨宏艳, 王涛, 崔红霞, 林宇, 李宏铃. 基于网络药理学和分子对接技术解读川皮苷改善代谢综合征的作用机制[J]. 中国药学(英文版), 2022, 31(11): 803-823. |
[13] | 吕慧婕, 许拓, 彭俊, 罗刚, 何剑琴, 杨丝丝, 张天成, 奉水东, 凌宏艳. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制[J]. 中国药学(英文版), 2022, 31(11): 824-839. |
[14] | 刘玥华, 薛章勤, 魏剑明, 魏若梦, 殷宝栋, 刘爱芹. 奥帕膦酸钠的药物合成及活性研究[J]. 中国药学(英文版), 2022, 31(11): 883-892. |
[15] | 蒋丽娟, 曹婷婷, 杨诺一, 李颖, 董林, 尹述凡. 一系列新型虫草素衍生物的设计、合成及其抗肿瘤活性研究[J]. 中国药学(英文版), 2022, 31(1): 55-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||