[1] |
Fu, J.J.; Ding, Y.L.; Wei, B.; Wang, L.; Xu, S.L.; Qin, P.X.; Wei, L.H.; Jiang, L.J. Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in Western China. BMC Infect. Dis. 2017, 17, 329.
|
[2] |
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence. 2013, 4, 119–128.
|
[3] |
Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13.
|
[4] |
Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY antifungal surveillance program: results for candida species from 1997–2016. Open Forum Infet. Dis. 2019, 6, S79–S94.
|
[5] |
Pfaller, M.A.; Moet, G.J.; Messer, S.A.; Jones, R.N.; Castanheira, M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY Antimicrobial Surveillance Program, 2008–2009. Antimicrob. Agents Chemother. 2011, 55, 561–566.
|
[6] |
Sehu, M.M.; Sidjabat, H.; Ellis, D.; McCormack, J.; Geoffrey Playford, E.; Paterson, D.L. Emergence of novel mutations of caspofungin resistance in candida glabrata with prolonged therapy. Pathology. 2010, 42, S60.
|
[7] |
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today. 2016, 21, 204–207.
|
[8] |
Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Li, H.B. Health functions and related molecular mechanisms of tea components: an update review. Int. J. Mol. Sci. 2019, 20, 6196.
|
[9] |
Li, J.; Zhang, A.Y.; Qi, Y.J.; Meng, X.C.; Zhang, Z.Q. Research progress in tea saponin from oil residue of camellia semiserrata. Food Sci. 2012, 33, 276–279.
|
[10] |
Yang, X.P.; Jiang, X.D. Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer. Biotechnol. Lett. 2015, 37, 1463–1472.
|
[11] |
Khan, M.I.; Ahhmed, A.; Shin, J.H.; Baek, J.S.; Kim, M.Y.; Kim, J.D. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study in vitro and in vivo. Evid. Based Complementary Altern. Med. 2018, 2018, 3486106.
|
[12] |
Li, E.; Sun, N.; Zhao, J.X.; Sun, Y.G.; Huang, J.G.; Lei, H.M.; Guo, J.H.; Hu, Y.L.; Wang, W.K.; Li, H.Q. In vitro evaluation of antiviral activity of tea seed saponins against porcine reproductive and respiratory syndrome virus. Antivir. Ther. 2015, 20, 743–752.
|
[13] |
Rugera, S. Antipyretic and antinociceptive properties of the aqueous extract and Saponin from an edible vegetable: Vernonia amygdalina leaf. Afr. J. Food Agric. Nutr. Dev. 2013, 13, 7587–7606.
|
[14] |
Sharangi Baran, A.B. Bioactive compounds and antioxidant properties of tea: status, global research and potentialities. J. Tea Sci. Res. 2016, 5, 1–13.
|
[15] |
Li, Y.; Shan, M.; Li, S.; Wang, Y.; Yang, H.; Chen, Y.; Gu, B.; Zhu, Z. Teasaponin suppresses Candida albicans filamentation by reducing the level of intracellular cAMP. Ann. Transl. Med. 2020, 8, 175–187.
|
[16] |
National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard. NCCLS. 2008, 28, 1–25.
|
[17] |
Hadacek, F.; Greger, H. Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem. Anal. 2000, 11, 137–147.
|
[18] |
Ding, X.R.; Yan, D.H.; Sun, W.; Zeng, Z.Y.; Su, R.R.; Su, J.R. Epidemiology and risk factors for nosocomial Non-Candida albicans candidemia in adult patients at a tertiary care hospital in North China. Med. Mycol. 2015, 53, 684–690.
|
[19] |
Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798.
|
[20] |
Dantas Ada, S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules. 2015, 5, 142–165.
|
[21] |
Mesa-Arango, A.C.; Trevijano-Contador, N.; Román, E.; Sánchez-Fresneda, R.; Casas, C.; Herrero, E.; Argüelles, J.C.; Pla, J.; Cuenca-Estrella, M.; Zaragoza, O. The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob. Agents Chemother. 2014, 58, 6627–6638.
|
[22] |
Leite, M.C.; Bezerra, A.P.; de Sousa, J.P.; Guerra, F.Q.; Lima Ede, O. Evaluation of antifungal activity and mechanism of action of citral against candida albicans. Evid. Based Complementary Altern. Med. 2014, 2014, 378280.
|
[23] |
Li, W.R.; Shi, Q.S.; Dai, H.Q.; Liang, Q.; Xie, X.B.; Huang, X.M.; Zhao, G.Z.; Zhang, L.X. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci. Rep. 2016, 6, 22805.
|
[24] |
Handy, D.E.; Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal. 2012, 16, 1323–1367.
|
[25] |
Villanueva, C.; Kross, R.D. Antioxidant-induced stress. Int. J. Mol. Sci. 2012, 13, 2091–2109.
|
[26] |
Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013.
|
[27] |
De Francesco, E.M.; Bonuccelli, G.; Maggiolini, M.; Sotgia, F.; Lisanti, M.P. Vitamin C and Doxycycline: a synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget. 2017, 8, 67269–67286.
|
[28] |
Bonuccelli, G.; De Francesco, E.M.; de Boer, R.; Tanowitz, H.B.; Lisanti, M.P. NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of Vitamin C and CAPE as natural products targeting "stemness". Oncotarget. 2017, 8, 20667–20678.
|
[29] |
Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007, 12, 913–922.
|