[1] |
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424.
|
[2] |
Chen, J.M.; Fan, T.J.; Xie, Z.J.; Zeng, Q.Q.; Xue, P.; Zheng, T.T.; Chen, Y.; Luo, X.L.; Zhang, H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials. 2020, 237, 119827.
|
[3] |
De Angelis, C. Side effects related to systemic cancer treatment: are we changing the Promethean experience with molecularly targeted therapies? Curr. Oncol. Tor. Ont. 2008, 15, 198–199.
|
[4] |
Phua, S.Z.F.; Yang, G.B.; Lim, W.Q.; Verma, A.; Chen, H.Z.; Thanabalu, T.; Zhao, Y.L. Catalase-integrated hyaluronic acid as nanocarriers for enhanced photodynamic therapy in solid tumor. ACS Nano. 2019, 13, 4742–4751.
|
[5] |
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer. 2003, 3, 380–387.
|
[6] |
Jiang, W.; Zhang, Z.; Wang, Q.; Dou, J.X.; Zhao, Y.Y.; Ma, Y.C.; Liu, H.R.; Xu, H.X.; Wang, Y.C. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 2019, 19, 4060–4067.
|
[7] |
Alzeibak, R.; Mishchenko, T.A.; Shilyagina, N.Y.; Balalaeva, I.V.; Vedunova, M.V.; Krysko, D.V. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J. Immunother. Cancer. 2021, 9, e001926. DOI:10.1136/jitc-2020-001926.
|
[8] |
Zhou, H.; Ge, J.X.; Miao, Q.Q.; Zhu, R.; Wen, L.; Zeng, J.F.; Gao, M.Y. Biodegradable inorganic nanoparticles for cancer theranostics: insights into the degradation behavior. Bioconjugate Chem. 2020, 31, 315–331.
|
[9] |
Bourquin, J.; Milosevic, A.; Hauser, D.; Lehner, R.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 2018, 30, 1704307.
|
[10] |
Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607.
|
[11] |
Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert. Opin. Drug Deliv. 2015, 12, 1649–1660.
|
[12] |
Maleki Dizaj, S.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert. Opin. Drug Deliv. 2019, 16, 331–345.
|
[13] |
Cheng, L.; Weir, M.D.; Xu, H.H.K.; Antonucci, J.M.; Kraigsley, A.M.; Lin, N.J.; Lin-Gibson, S.; Zhou, X.D. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater. 2012, 28, 561–572.
|
[14] |
Ferreira, J.R.; Ferreira, J.R.; Padilla, R.; Urkasemsin, G.; Yoon, K.; Goeckner, K.; Hu, W.S.; Ko, C.C. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration. Tissue Eng. A. 2013, 19, 1803–1816.
|
[15] |
Huang, H.F.; Zhang, W.J.; Liu, Z.; Guo, H.Q.; Zhang, P.Y. Smart responsive-calcium carbonate nanoparticles for dual-model cancer imaging and treatment. Ultrasonics. 2020, 108, 106198.
|
[16] |
Zhao, D.; Liu, C.J.; Zhuo, R.X.; Cheng, S.X. Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol. Pharm. 2012, 9, 2887–2893.
|
[17] |
Lin, T.; Zhao, X.; Zhao, S.; Yu, H.; Cao, W.; Chen, W.; Wei, H.; Guo, H. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics. 2018, 8, 990–1004.
|
[18] |
Hoorelbeke, D.; Decrock, E.; van Haver, V.; Bock, M.D.; Leybaert, L. Calcium, a pivotal player in photodynamic therapy? Biochim. Et Biophys. Acta BBA Mol. Cell Res. 2018, 1865, 1805–1814.
|
[19] |
Ding, X.M.; Xu, Q.Z.; Liu, F.G.; Zhou, P.K.; Gu, Y.; Zeng, J.; An, J.; Dai, W.D.; Li, X.S. Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Lett. 2004, 216, 43–54.
|
[20] |
Hong, X.; Jiang, F.; Kalkanis, S.N.; Zhang, Z.G.; Zhang, X.P.; Zheng, X.G.; Jiang, H.; Chopp, M. Intracellular free calcium mediates glioma cell detachment and cytotoxicity after photodynamic therapy. Lasers Med. Sci. 2009, 24, 777–786.
|
[21] |
Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: a mutual interplay. Redox Biol. 2015, 6, 260–271.
|
[22] |
Yan, Y.; Wei, C.L.; Zhang, W.R.; Cheng, H.P.; Liu, J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol. Sin. 2006, 27, 821–826.
|
[23] |
Wu, J.L.; Wang, C.Q.; Zhuo, R.X.; Cheng, S.X. Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf. B Biointerfaces. 2014, 123, 498–505.
|
[24] |
Preisig, D.; Haid, D.; Varum, F.J.O.; Bravo, R.; Alles, R.; Huwyler, J.; Puchkov, M. Drug loading into porous calcium carbonate microparticles by solvent evaporation. Eur. J. Pharm. Biopharm. 2014, 87, 548–558.
|
[25] |
Wang, C.; Tao, H.Q.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamicS therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011, 32, 6145–6154.
|
[26] |
Yang, T.Z.; Wan, Z.H.; Liu, Z.Y.; Li, H.H.; Wang, H.; Lu, N.; Chen, Z.H.; Mei, X.F.; Ren, X.L. In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property. Mater. Sci. Eng. C. 2016, 63, 384–392.
|