中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (8): 645-664.DOI: 10.5246/jcps.2023.08.054
王慧敏1,2,#, 赵雨营1,2,#, 徐晓艳1,2,#, 谢胡敏1,2, 姜美婷1,2, 王洪达1,2, 徐蓓1,2, 李晓航1,2, 王思淼1,2, 陈博学1,2, 杨飞飞1,2, 杨文志1,2,*()
收稿日期:
2023-03-21
修回日期:
2023-04-19
接受日期:
2023-06-27
出版日期:
2023-08-31
发布日期:
2023-08-31
通讯作者:
杨文志
作者简介:
基金资助:
Huimin Wang1,2,#, Yuying Zhao1,2,#, Xiaoyan Xu1,2,#, Humin Xie1,2, Meiting Jiang1,2, Hongda Wang1,2, Bei Xu1,2, Xiaohang Li1,2, Simiao Wang1,2, Boxue Chen1,2, Feifei Yang1,2, Wenzhi Yang1,2,*()
Received:
2023-03-21
Revised:
2023-04-19
Accepted:
2023-06-27
Online:
2023-08-31
Published:
2023-08-31
Contact:
Wenzhi Yang
About author:
摘要:
人参是全世界范围内广受欢迎的滋补品, 经蒸制后补益效果更佳。先前对人参蒸制的研究主要集中在所含的皂苷, 但对其挥发性成分研究较少。本研究建立了顶空进样气相色谱-质谱联用结合非靶标代谢组学方法, 对人参、西洋参和三七在蒸制过程中挥发性成分的变化进行整体性表征。通过优化GC-MS色谱分离条件, 采用HP-5MS弹性石英毛细管柱在38 分钟内实现对人参、西洋参和三七生品及蒸制品(1–10 h)中挥发性成分的表征。从人参、西洋参和三七中分别鉴定出了106、106和105种挥发性成分。多元统计分析可以描述不同蒸制时间介导的人参、西洋参和三七的转化轨迹。最终, 通过基于GC-MS的非靶标代谢组学分析, 发现人参、西洋参和三七蒸制过程中分别有13、16和14种差异成分。值得注意的是, 其中异戊醇、2-正戊基呋喃、正己醛、丁香烯和(?)-马兜铃烯可以区分人参的生品和炮制品; α-蒎烯、2-正戊基呋喃、己酸、2,3-丁二醇和丙酮酸可以区分西洋参生品和炮制品; 莎草烯、糠醛、Δ-杜松烯、羟基丙酮和1-戊醇可以区分三七生品和炮制品。本研究所建立的气相色谱-质谱联用方法可以揭示中药中挥发性成分的变化, 为进一步探讨中药炮制机理提供一种实用的分析工具。
Supporting:
王慧敏, 赵雨营, 徐晓艳, 谢胡敏, 姜美婷, 王洪达, 徐蓓, 李晓航, 王思淼, 陈博学, 杨飞飞, 杨文志. 基于顶空进样气相色谱-质谱联用和非靶标代谢组学分析人参、西洋参和三七经蒸制后挥发性成分的转化[J]. 中国药学(英文版), 2023, 32(8): 645-664.
Huimin Wang, Yuying Zhao, Xiaoyan Xu, Humin Xie, Meiting Jiang, Hongda Wang, Bei Xu, Xiaohang Li, Simiao Wang, Boxue Chen, Feifei Yang, Wenzhi Yang. Steaming-induced conversion of the volatile components for P. ginseng, P. quinquefolius, and P. notoginseng by headspace sampling gas chromatography-mass spectrometry (HS-GC-MS) and untargeted metabolomics analysis[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 645-664.
Figure 3. PCA score plots of the steaming products of PG, PQ, and PN obtained under multiple preparation times (A1, A2: the 2D and 3D PCA score plots of PG; B1, B2: the 2D and 3D PCA score plots of PQ; C1, C2: the 2D and 3D PCA score plots of PN).
Figure 4. Metabolomics analysis of the volatile components in PG, PQ, and PN between the raw and steamed products (A-chemometrics analysis: a, b, and c were the OPLS-DA score plots, and d, e, and f were the VIP plots; the VIP cutoff was set to 1.0. B-Box charts showing the content variations for 15 major differential components in three Panax varieties across different steaming times).
[1] |
Feng, K.Y.; Wang, S.M.; Han, L.F.; Qian, Y.X.; Li, H.F.; Li, X.; Jia, L.; Hu, Y.; Wang, H.M.; Liu, M.Y.; Hu, W.D.; Guo, D.A.; Yang, W.Z. Configuration of the ion exchange chromatography, hydrophilic interaction chromatography, and reversed-phase chromatography as off-line three-dimensional chromatography coupled with high-resolution quadrupole-Orbitrap mass spectrometry for the multicomponent characterization of Uncaria sessilifructus. J. Chromatogr. A. 2021, 1649, 462237.
|
[2] |
Xu, X.Y.; Wang, S.M.; Wang, H.M.; Hu, W.D.; Han, L.F.; Chen, B.X.; Li, X.; Wang, H.D.; Li, HF; Gao, X.M.; Guo, D.A.; Yang, W.Z. Simultaneous quantitative assays of 15 ginsenosides from 119 batches of ginseng samples representing 12 traditional Chinese medicines by ultra-high performance liquid chromatography coupled with charged aerosol detector. J. Chromatogr. A. 2021, 1655, 462504.
|
[3] |
Lu, J.X.; Zhang, C.X.; Hu, Y.; Zhang, M.H.; Wang, Y.N.; Qian, Y.X.; Yang, J.; Yang, W.Z.; Jiang, M.M.; Guo, D.A. Application of multiple chemical and biological approaches for quality assessment of Carthamus tinctorius L. (safflower) by determining both the primary and secondary metabolites. Phytomedicine. 2019, 58, 152826.
|
[4] |
Wang, H.D.; Wang, H.M.; Xu, X.Y.; Wang, X.Y.; Hu, Y.; Li, X.; Shi, X.J.; Wang, S.M.; Liu, J.; Qian, Y.X.; Gao, X.M.; Yang, W.Z.; Guo, D.A. A novel hybrid scan approach enabling the ion-mobility separation and the alternate data-dependent and data-independent acquisitions (HDDIDDA): Its combination with off-line two-dimensional liquid chromatography for comprehensively characterizing the multicomponents from compound Danshen Dripping Pill. Anal. Chim. Acta. 2022, 1193, 339320.
|
[5] |
Zuo, M.T.; Liu, Y.C.; Sun, Z.L.; Lin, L.; Tang, Q.; Cheng, P.; Liu, Z.Y. An integrated strategy toward comprehensive characterization and quantification of multiple components from herbal medicine: an application study in Gelsemium elegans. Chin. Herb. Med. 2021, 13, 17–32.
|
[6] |
Yang, W.Z.; Hu, Y.; Wu, W.Y.; Ye, M.; Guo, D.A. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry. 2014, 106, 7–24.
|
[7] |
Li, X.; Liu, J.; Zuo, T.T; Hu, Y.; Li, Z.; Wang, H.D.; Xu, X.Y.; Yang, W.Z.; Guo, D.A. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat. Prod. Rep. 2022, 39, 875–909.
|
[8] |
Jia, L.; Zuo, T.T.; Zhang, C.X.; Li, W.W.; Wang, H.D.; Hu, Y.; Wang, X.Y.; Qian, Y.X.; Yang, W.Z.; Yu, H.S. Simultaneous profiling and holistic comparison of the metabolomes among the flower buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMSE-based metabolomics analysis. Molecules. 2019, 24, 2188.
|
[9] |
Jia, L.; Wang, H.D.; Xu, X.Y.; Wang, H.M.; Li, X.; Hu, Y.; Chen, B.X.; Liu, M.Y.; Gao, X.M.; Li, H.F.; Guo, D.A.; Yang, W.Z. An off-line three-dimensional liquid chromatography/Q-Orbitrap mass spectrometry approach enabling the discovery of 1561 potentially unknown ginsenosides from the flower buds of Panax ginseng, Panax quinquefolius and Panax notoginseng. J. Chromatogr. A. 2022, 1675, 463177.
|
[10] |
Zhang, C.X.; Wang, X.Y.; Lin, Z.Z.; Wang, H.D.; Qian, Y.X.; Li, WW; Yang, W.Z.; Guo, D.A. Highly selective monitoring of in-source fragmentation sapogenin product ions in positive mode enabling group-target ginsenosides profiling and simultaneous identification of seven Panax herbal medicines. J. Chromatogr. A. 2020, 1618, 460850.
|
[11] |
Liu, J.; Wang, H.D.; Yang, F.F.; Chen, B.X.; Li, X.; Huang, Q.X.; Li, j.; Li, X.Y; Li, Z.; Yu, H.S.; Guo, D.A.; Yang, W.Z. Multi-level fingerprinting and cardiomyocyte protection evaluation for comparing polysaccharides from six Panax herbal medicines. Carbohydr. Polym. 2022, 277, 118867.
|
[12] |
Shi, X.J.; Yang, W.Z.; Qiu, S.; Hou, J.J.; Wu, W.Y.; Guo, D.A. Systematic profiling and comparison of the lipidomes from Panax ginseng, P. quinquefolius, and P. notoginseng by ultrahigh performance supercritical fluid chromatography/high-resolution mass spectrometry and ion mobility-derived collision cross section measurement. J. Chromatogr. A. 2018, 1548, 64–75.
|
[13] |
Zhang, M.L.; Yang, Y.W.; Sun, Y.; Zhang, L.; Zong, S.; Ye, Z.L. Comparative study on chemical constituents of essential oil of ginseng. J. Chin. Med. Mater. 2019, 42, 813–817.
|
[14] |
Zhao, N.; Cheng, M.C.; Lv, W.; Wu, Y.L.; Liu, D.; Zhang, X.Z. Peptides as potential biomarkers for authentication of mountain-cultivated ginseng and cultivated ginseng of different ages using UPLC-HRMS. J. Agric. Food Chem. 2020, 68, 2263–2275.
|
[15] |
Ratan, Z.A.; Haidere, M.F.; Hong, Y.H.; Park, S.H.; Lee, J.O.; Lee, J.; Cho, J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021, 45, 199–210.
|
[16] |
Wang, Z.Z.; Zhang, H.; Li, J.G.; Meng, J.T.; Tang, Q.Z. Identification of Ginseng Radix et Rhizoma Rubra, Panacis Quinquefolii Radix and Ginseng Radix et Rhizoma based on GC-IMS technology. J. Chin. Med. Mater. 2022, 08, 1889−1897.
|
[17] |
Zhao, Y.; Wang, H.; Cai, E.B.; Gao, Y.G.; He, Z.M.; Yang, H.; Liu, S.L.; Zhang, L.X. Research progress on chemical constituents of ginseng volatile oil and pharmacological effects of its main active components polyacetylene alcohol. J China Pharm. 2017, 28, 1856–1859.
|
[18] |
Peng, X.; Li, C.Y. Advances in the research on volatile oil from ginseng. Jilin. J. Chin. Med. 2017, 37, 71–74.
|
[19] |
Qi, A.N.; Guo, M.; Shen, Y.J.; Zhang, Y.; Wang, R.L.; Guo, L.; Zheng, Y.G.; Zhang, D. Comparative study on changes of ginsenosides and activities of American ginseng before and after steaming. China J. Chin. Mater. Med. 2020, 45, 4404–4410.
|
[20] |
Han, H.L.; Zhou, X.T.; Thomas, A.G.; Chen, C.Y.; Hu, X.L.; Ji, R.F.; He, X. Research progress on processing methods, chemical constituents, and pharmacological action of black ginseng. Chin. Tradit. Herb. Drugs. 2022, 53, 912–920.
|
[21] |
Xing, N.; Peng, D.H.; Zhang, Z.H.; Zhang, Z.D.; Kuang, H.X.; Wang, Q.H. Progress in research on effect of processing on chemical constituents and pharmacological effect of Notoginseng Radix et Rhizoma. Chin. J. Exp. Tradit. Med. Formulae. 2020, 26, 210–217.
|
[22] |
Wang, S.M.; Li, X.H.; Jiang, M.T.; Wu, X.L.; Zhao, Y.Y.; Liu, M.Y.; Xu, X.Y.; Wang, H.M.; Wang, H.D.; Yu, H.S.; Yang, W.Z. Headspace solid-phase micro-extraction gas chromatography/mass spectrometry (HS-SPME-GC/MS)-based untargeted metabolomics analysis for comparing the volatile components from 12 panax herbal medicines. Phyton. 2022, 91, 1353–1364.
|
[23] |
Liu, C.X. Quality study needs innovation. Chin. Herb. Med. 2021, 13, 1.
|
[24] |
Yan, X.M.; Gao, T.X.; Shi, L.Y.; Wang, R. Qualitation of Chuanxiong Rhizome essential oil and determination of 3-butylidenephthalide and ligustilide by GC-MS. J. Chin. Pharm. Sci. 2021, 30, 434–445.
|
[25] |
Zhou, J.; Liu, F.J.; Li, X.X.; Li, P.; Yang, H.; Liu, Y.C.; Chen, Y.H.; Wei, C.D.; Li, H.J. A strategy for rapid discovery of traceable chemical markers in herbal products using MZmine 2 data processing toolbox: a case of Jing Liqueur. Chin. Herb. Med. 2021, 13, 430–438.
|
[26] |
Yu, D.X.; Guo, S.; Wang, J.M.; Yan, H.; Zhang, Z.Y.; Yang, J.; Duan, J.N. Comparison of different drying methods on the volatile components of ginger (Zingiber officinale roscoe) by HS-GC-MS coupled with fast GC E-nose. Foods. 2022, 11, 1611.
|
[27] |
Brendel, R.; Schwolow, S.; Rohn, S.; Weller, P. Volatilomic profiling of Citrus juices by dual-detection HS-GC-MS-IMS and machine learning-an alternative authentication approach. J. Agric. Food Chem. 2021, 69, 1727–1738.
|
[28] |
Tong, H.F.; Xue, J.; Tong, Y.L.; Liu, H.L.; Zhao, B.H. Analysis of unique volatile components from Ginseng and Quinquefolius using for determining. Chin. J. Exp. Tradit. Med. Formulae. 2013, 96, 1489–1494.
|
[29] |
Li, L.M.; Ren, B.; Guo, J.W.; Deng, Z.J.; Liu, R.X. Analysis of volatile composition of different specification of Panax notoginseng. J. Chin. Med. Mater. 2013, 36, 934–938.
|
[30] |
Xia, P.G.; Li, J.Z.; Wang, R.L.; Zhang, Y.; Guo, H.B.; Yan, X.J.; Liu, Y.; Liang, Z.S. Comparative study on volatile oils of four Panax genus species in Southeast Asia by gas chromatography-mass spectrometry. Ind. Crops Prod. 2015, 74, 478–484.
|
[31] |
Qiu, Y.Q.; Lu, X.; Pang, T.; Ma, C.F.; Li, X.; Xu, G.W. Determination of radix ginseng volatile oils at different ages by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. J. Sep. Sci. 2008, 31, 3451–3457.
|
[32] |
Cao, G.; Li, Q.L.; Wu, X.; Zhang, J.D.; Zhang, H.Y.; Jiang, J.P. Coupling needle-trap devices with comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry to rapidly reveal the chemical transformation of volatile components from sulfur-fumigated ginseng. J. Sep. Sci. 2015, 38, 1248–1253.
|
[33] |
Cui, L.L.; Xu, J.Y.; Feng, Z.W.; Yan, M.X.; Piao, X.M.; Yu, Y.; Hou, W.; Jin, Y.P.; Wang, Y.P. Simultaneous determination and difference evaluation of volatile components generated from ginseng fruit by HS-SPME Coupled with GC-MS according to fruit color. Food Sci. Technol. 2020, 40, 532–536.
|
[34] |
Xia, P.; Li, J.; Wang, R.; Zhang, Y.; Guo, H.B.; Yan, X.J.; Liu, Y.; Liang, Z.S. Comparative study on volatile oils of four Panax genus species in Southeast Asia by gas chromatography-mass spectrometry. Ind. Crops Prod. 2015, 74, 478–484.
|
[35] |
Windarsih, A.; Warmiko, H.D.; Indrianingsih, A.W.; Rohman, A.; Ulumuddin, Y.I. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chem. 2022, 386, 132856.
|
[36] |
Jiao, H.Y.; Xu, S.M.; Fan, CL; Zhang, Q.W.; Wang, Y. Chromatographic fingerprint analysis and quantitative evaluate the rhizomes of Alpinia officinarum Hance. J. Chin. Pharm. Sci. 2019, 28, 728–738.
|
[37] |
Guo, Z.T.; Hu, B.; Zhu, L.Y.; Yang, Y.L.; Liu, C.Y.; Liu, F.; Shi, Y.; Li, M.Y.; Gu, Z.H.; Xin, Y.; Yi, D.L.; Liu, H.G.; Zhang, L. Microbiome-metabolomics insights into the feces of high-fat diet mice to reveal the anti-obesity effects of yak (Bos grunniens) bone collagen hydrolysates. Food Res. Int. 2022, 156, 111024.
|
[38] |
Zhong, P.; Wei, X.; Li, X.; Wei, X.Y.; Wu, S.Z.; Huang, W.J.; Koidis, A.; Xu, Z.L.; Lei, H.T. Untargeted metabolomics by liquid chromatography-mass spectrometry for food authentication: a review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2455–2488.
|
[39] |
Han, M.; Jiang, H.M. Analysis of volatile components from raw product and processed products of Citri Reticulatae Pericarpuium by HS-SPME-GC-MS combined with stoichiometyt. China J. Tradit. Chin. Med. Pharm. 2021, 36, 2915−2922.
|
[40] |
Huang, B.M.; Zha, Q.L.; Chen, T.B.; Xiao, S.Y.; Xie, Y.; Luo, P.; Wang, Y.P.; Liu, L.; Zhou, H. Discovery of markers for discriminating the age of cultivated ginseng by using UHPLC-QTOF/MS coupled with OPLS-DA. Phytomedicine. 2018, 45, 8−17.
|
[41] |
Yu, F.; Wan, N.; Li, Y.H.; Wang, X.C.; Wu, Z.F.; Yang, M. Analysis on change rule and mechanism in physical and chemical of Chinese herbal medicines during drying. Chin. Tradit. Herb. Drugs. 2021, 52, 2144−2153.
|
[42] |
Wang, W.; Zheng, F.; Ge, Y.; Qiao, M.D.; Yue, H.; Liu, S.Y. Analysis of volatile components in processed ginseng by GC-MS/MS. Chin. J. Appl. Chem. 2017, 34, 965−970.
|
[43] |
Wu, J.Z.; Li, XG; Yang, J.X. Comparative study on volatile oil components of red ginseng and fresh ginseng. Str. Pharm. J. 1996, 01, 5−6.
|
[44] |
Zeng, C.; Yang, D.K.; Ji, Q.Q.; Shi, Y.; Huang, Y.C.; Li, D.; Li, X.L. Determination of saponins and volatile components in 4 kinds of ginseng wine by gas chromatography–mass spectrometry and high performance liquid chromatography. J. Food Saf. Food Qual. 2021, 12, 6448−6456.
|
[45] |
Zheng, Y.L.; Zhang, C.X.; Li, XG; Guo, R.W.; Xu, C.L. Chemical sortation and structural identification of essential oil in panax quinqllefolius. J. Jilin Agric. Univ. 1992, 14, 33–37, 94.
|
[1] | 孙义政, 曲颖, 刘晓艳, 徐嵬, 张友波. 不同地域人参药材中人参皂苷的比较研究[J]. 中国药学(英文版), 2023, 32(12): 961-970. |
[2] | 沈新宇, 王星辰, 顾彩虹, 严峰, 潘博, 高利增, 颜丙春, 刘岐, 胡荣. 较人参皂苷Rg3生物高效的新型制剂-竹节参片研究[J]. 中国药学(英文版), 2019, 28(9): 650-664. |
[3] | 郑怡然, 吴秀稳, 杨秀伟. 20(S)-原人参三醇和20(R)-原人参三醇差向异构体及达玛-20(22)E,24-二烯-3β,6α,12β-三醇在MDCK-pHaMDR细胞单层模型中的跨血脑屏障研究[J]. 中国药学(英文版), 2017, 26(8): 566-573. |
[4] | 薛清丹, 王鹏, 康宇红, 李秋红. 高效液相色谱法同时测定大鼠血浆中人参皂苷Rg1, Re, Rb1及其在参麦注射液药动学研究中的应用[J]. 中国药学(英文版), 2015, 24(7): 475-481. |
[5] | 王冰冰, 齐文, 王莉莉, 孔德强, 鹿野美弘, 李晶欣, 袁丹. 三种细辛挥发油的化学成分、镇痛作用及急性毒性实验的比较研究[J]. 中国药学(英文版), 2014, 23(7): 480-489. |
[6] | 鲁兖, 刘丽娜, 楼洪刚, 徐翔*. 参附注射液对化疗引起的骨髓抑制的保护作用[J]. , 2012, 21(4): 345-349. |
[7] | 贾凌晗, 刘一*, 李玉珍 . 超声波辅助溶剂萃取西藏和河南藏红花中挥发油的GC-MS分析[J]. , 2011, 20(4): 404-409. |
[8] | 袁梽漪, 孟甄, 柴玉爽, 兰嘉琦, 雷帆, 李慧颖, 邢东明, 李慧玉, 杜力军*. 人参皂苷Rg1 通过作用于炎性因子和糖皮质激素受体减少金葡菌对肺上皮细胞的损伤[J]. , 2011, 20(3): 266-274. |
[9] | 娄大伟* . 等度高效液相色谱法同时快速测定人参皂苷[J]. , 2010, 19(5): 393-399. |
[10] | 钟凌云*, 龚千锋, 祝婧, 陈芳. 气-质联用分析比较麻黄及其炮制品中挥发性成分[J]. , 2010, 19(1): 67-73. |
[11] | 张春江1, 刘春梅2, 贠田1, 李红玉1*. 藏药榜嘎挥发油成分和抑菌活性研究[J]. , 2009, 18(3): 240-244. |
[12] | 梅文莉, 曾艳波, 吴娇, 崔海滨, 戴好富*. 中国沉香挥发油的化学成分与抗耐甲氧西林金葡菌活性[J]. , 2008, 17(3): 225-229. |
[13] | 曾凤, 王晓明, 杨敏, 卢志强, 果德安*. 高效液相色谱法对不同种人参属药用植物的指纹图谱分析[J]. , 2007, 16(4): 277-281. |
[14] | 杨秀伟*, 张鹏, 陶海燕, 蒋舜媛, 周毅. 宽叶羌活根茎和根的挥发油成分的GC-MS分析[J]. , 2006, 15(4): 200-205. |
[15] | 杨秀伟*, 张鹏, 陶海燕, 蒋舜媛, 周毅. 狭叶羌活根茎和根的挥发油成分的GC-MS分析[J]. , 2006, 15(3): 172-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||