中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (7): 631-646.DOI: 10.5246/jcps.2024.07.047
魏晓玉1,#, 于路航2,#, 李梦茹3,#, 徐强4,*()
收稿日期:
2023-12-21
修回日期:
2024-01-23
接受日期:
2024-03-12
出版日期:
2024-07-30
发布日期:
2024-07-30
通讯作者:
徐强
Xiaoyu Wei1,#, Luhang Yu2,#, Mengru Li3,#, Qiang Xu4,*()
Received:
2023-12-21
Revised:
2024-01-23
Accepted:
2024-03-12
Online:
2024-07-30
Published:
2024-07-30
Contact:
Qiang Xu
About author:
# Xiaoyu Wei, Luhang Yu and Mengru Li contributed equally to this work.
Supported by:
摘要:
本文旨在利用网络药理学方法探索连花清瘟-辛夷散对新冠嗅觉损伤主要成分的作用靶点, 并试图揭示其在新冠致嗅觉损伤相关治疗中的作用机制。我们利用TCMSP平台进行口服利用度和类药性筛选获取潜在有效成分; Swiss TargetPrediction平台预测有效成分的作用靶标, 构建药物-成分-作用靶标网络, 再通过GeneCards、OMIM、TTD平台获取新冠嗅觉损伤基因靶点, 将药物靶标和疾病基因相交集获得共同靶点。利用STRING及Cytoscape 3.8.2软件构建靶标-疾病基因PPI网络, 筛选关键靶点和核心基因团簇, 借助Metascape平台对关键靶点进行GO和KEGG富集分析, 并就筛选出来的核心有效成分及其作用靶标映射到通路中, 构建核心有效成分-靶标-通路网络, 最后进行分子对接。结果显示连花清瘟-辛夷散活性成分有4669个潜在靶点, 5609个疾病靶点和17个药物-疾病交叉靶点。GO和KEGG富集分析显示, 连花清瘟-辛夷散治疗新冠嗅觉损伤相关的机制可能是由于相关信号通路的调控作用, 如5-羟色胺能突触和脂肪细胞的脂解调节。分子对接结果表明, 6种活性成分(槲皮素、木犀草素、山奈酚、7-甲氧基-2-甲基异黄酮、汉黄芩素、美迪紫檀素)和2个关键基因(PTGS2、PPARG)具有良好的结合特性。综上我们可以得到结论: 连花清瘟-辛夷散可能通过作用于脂肪细胞中的5-羟色胺能突触和调节脂解通路, 从而实现治疗新冠嗅觉损伤的相关作用。
Supporting:
魏晓玉, 于路航, 李梦茹, 徐强. 网络药理学研究揭示连花清瘟-辛夷散联合治疗新冠后嗅觉损伤的潜在作用机制[J]. 中国药学(英文版), 2024, 33(7): 631-646.
Xiaoyu Wei, Luhang Yu, Mengru Li, Qiang Xu. A network pharmacological study to investigate the combination of LHQW-XYS in the treatment of COVID-19 olfactory impairment-associated[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(7): 631-646.
Figure 4. (a) PPI network construction and core module of COVID-19 olfactory impairment and LHQW-XYS; (b) the most significant modules analyzed by the MCODE plugin.
Figure 5. (a) Intersection target GO enrichment analysis: biological process (BP), cell composition (CC), molecular function (MF); (b) KEGG enrichment analysis.
Figure 6. (a) Schematic diagram of PPARG-6FZG docking; (b) Schematic diagram of PTGS2-5IKR docking; (c) Core active ingredients and core protein binding energy (kcal/mol).
[1] |
McFee, R.B. Severe acute respiratory syndrome coronavirus (SARS, SARS CoV). Disease-a-Month. 2020, 66, 101062.
|
[2] |
Abalo-Lojo, J.M.; Pouso-Diz, J.M.; Gonzalez, F. Taste and smell dysfunction in COVID-19 patients. Ann. Otol. Rhinol. Laryngol. 2020, 129, 1041–1042.
|
[3] |
Aggarwal, S.; Garcia-Telles, N.; Aggarwal, G.; Lavie, C.; Lippi, G.; Henry, B.M. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): early report from the United States. Diagnosis. 2020, 7, 91–96.
|
[4] |
Gautier, J.F.; Ravussin, Y. A new symptom of COVID-19: loss of taste and smell. Obesity. 2020, 28, 848.
|
[5] |
Gilani, S.; Roditi, R.; Naraghi, M. COVID-19 and anosmia in Tehran, Iran. Med. Hypotheses. 2020, 141, 109757.
|
[6] |
Hopkins, C.; Surda, P.; Whitehead, E.; Kumar, B.N. Early recovery following new onset anosmia during the COVID-19 pandemic – an observational cohort study. J. Otolaryngol. Head Neck Surg. 2020, 49, 26.
|
[7] |
Huang, C.L.; Wang, Y.M.; Li, X.W.; Ren, L.L.; Zhao, J.P.; Hu, Y.; Zhang, L.; Fan, G.H.; Xu, J.Y.; Gu, X.Y.; Cheng, Z.S.; Yu, T.; Xia, J.A.; Wei, Y.; Wu, W.J.; Xie, X.L.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.G.; Wang, G.F.; Jiang, R.M.; Gao, Z.C.; Jin, Q.; Wang, J.W.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395, 497–506.
|
[8] |
Merza, M.A.; Haleem Al Mezori, A.A.; Mohammed, H.M.; Abdulah, D.M. COVID-19 outbreak in Iraqi Kurdistan: the first report characterizing epidemiological, clinical, laboratory, and radiological findings of the disease. Diabetes Metab. Syndr. 2020, 14, 547–554.
|
[9] |
Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; Chekkoury-Idrissi, Y.; Hans, S.; Delgado, I.L.; Calvo-Henriquez, C.; Lavigne, P.; Falanga, C.; Barillari, M.R.; Cammaroto, G.; Khalife, M.; Leich, P.; Souchay, C.; Rossi, C.; Journe, F.; Hsieh, J.; Edjlali, M.; Carlier, R.; Ris, L.; Lovato, A.; De Filippis, C.; Coppee, F.; Fakhry, N.; Ayad, T.; Saussez, S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 2020, 277, 2251–2261.
|
[10] |
Beltrán-Corbellini, Á.; Chico-García, J.L.; Martínez-Poles, J.; Rodríguez-Jorge, F.; Natera-Villalba, E.; Gómez-Corral, J.; Gómez-López, A.; Monreal, E.; Parra-Díaz, P.; Cortés-Cuevas, J.L.; Galán, J.C.; Fragola-Arnau, C.; Porta-Etessam, J.; Masjuan, J.; Alonso-Cánovas, A. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case-control study. Eur. J. Neurol. 2020, 27, 1738–1741.
|
[11] |
Brann, D.H.; Tsukahara, T.; Weinreb, C.; Lipovsek, M.; Van den Berge, K.; Gong, B.Y.; Chance, R.; MacAulay, I.C.; Chou, H.J.; Fletcher, R.B.; Das, D.; Street, K.; de Bezieux, H.R.; Choi, Y.G.; Risso, D.; Dudoit, S.; Purdom, E.; Mill, J.; Hachem, R.A.; Matsunami, H.; Logan, D.W.; Goldstein, B.J.; Grubb, M.S.; Ngai, J.; Datta, S.R. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020, 6, eabc5801.
|
[12] |
Eliezer, M.; Hautefort, C.; Hamel, A.L.; Verillaud, B.; Herman, P.; Houdart, E.; Eloit, C. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 674–675.
|
[13] |
Gorzkowski, V.; Bevilacqua, S.; Charmillon, A.; Jankowski, R.; Gallet, P.; Rumeau, C.; Nguyen, D. Evolution of olfactory disorders in COVID‐19 patients. Laryngoscope. 2020, 130, 2667–2673.
|
[14] |
Jung, A.Y.; Kim, Y.H. Reversal of olfactory disturbance in allergic rhinitis related to OMP suppression by intranasal budesonide treatment. Allergy Asthma Immunol. Res. 2020, 12, 110.
|
[15] |
Wong, S.K.; Li, W.H.; Moore, M.J.; Choe, H.; Farzan, M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 2004, 279, 3197–3201.
|
[16] |
Miwa, T.; Ikeda, K.; Ishibashi, T.; Kobayashi, M.; Kondo, K.; Matsuwaki, Y.; Ogawa, T.; Shiga, H.; Suzuki, M.; Tsuzuki, K.; Furuta, A.; Motoo, Y.; Fujieda, S.; Kurono, Y. Clinical practice guidelines for the management of olfactory dysfunction - Secondary publication. Auris Nasus Larynx. 2019, 46, 653–662.
|
[17] |
Shen, X.H.; Yin, F.G. The mechanisms and clinical application of Traditional Chinese Medicine Lianhua-Qingwen capsule. Biomed. Pharmacother. 2021, 142, 111998.
|
[18] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[19] |
Mu, C.L.; Sheng, Y.F.; Wang, Q.; Amin, A.; Li, X.G.; Xie, Y.Q. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: viral and cancer signaling mechanisms. J. Funct. Foods. 2021, 77, 104149.
|
[20] |
Pei, T.L.; Zheng, C.L.; Huang, C.; Chen, X.T.; Guo, Z.H.; Fu, Y.X.; Liu, J.L.; Wang, Y.H. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J. Ethnopharmacol. 2016, 190, 272–287.
|
[21] |
Schoch, C.; Ciufo, S.; Domrachev, M.; Hotton, C.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O'Neill, K.; Robbertse, B.; Sharma, S.; Soussov, V.; Sullivan, J.P.; Sun, L.; Turner, S.; Karsch-Mizrachi, I. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020, baaa062, 1–21.
|
[22] |
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: network analysis and visualization of proteomics data. J. Proteome Res. 2019, 18, 623–632.
|
[23] |
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11.
|
[24] |
Zhou, J.G.; Xiong, W.; Wang, Y.; Guan, J.H. Protein function prediction based on PPI networks: network reconstruction vs edge enrichment. Front. Genet. 2021, 12, 758131.
|
[25] |
Kontoyianni, M. Docking and virtual screening in drug discovery. Methods Mol. Biol. 2017, 1647, 255–266.
|
[26] |
El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol. Biol. 2017, 1598, 391–403.
|
[27] |
Rosignoli, S.; Paiardini, A. Boosting the full potential of PyMOL with structural biology plugins. Biomolecules. 2022, 12, 1764.
|
[28] |
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl. J. Med. 2020, 382, 1708–1720.
|
[29] |
Gopinath, B.; Anstey, K.J.; Kifley, A.; Mitchell, P. Olfactory impairment is associated with functional disability and reduced independence among older adults. Maturitas. 2012, 72, 50–55.
|
[30] |
Pinto, J.M.; Wroblewski, K.E.; Kern, D.W.; Schumm, L.P.; McClintock, M.K. Olfactory dysfunction predicts 5-year mortality in older adults. PLoS One. 2014, 9, e107541.
|
[31] |
Glezer, I.; Bruni-Cardoso, A.; Schechtman, D.; Malnic, B. Viral infection and smell loss: The case of COVID-19. J. Neurochem. 2021, 157, 930–943.
|
[32] |
Najafloo, R.; Majidi, J.; Asghari, A.; Aleemardani, M.; Kamrava, S.K.; Simorgh, S.; Seifalian, A.; Bagher, Z.; Seifalian, A.M. Mechanism of anosmia caused by symptoms of COVID-19 and emerging treatments. ACS Chem. Neurosci. 2021, 12, 3795–3805.
|
[33] |
Ahmed, A.K.; Sayad, R.; Mahmoud, I.A.; Abd EL-Monem, A.M.; Badry, S.H.; Ibrahim, I.H.; Hafez, M.H.; El-Mokhtar, M.A.; Sayed, I.M. "Anosmia" the mysterious collateral damage of COVID-19. J. NeuroVirology. 2022, 28, 189–200.
|
[34] |
Russell, B.; Moss, C.; Rigg, A.; Van Hemelrijck, M. COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting? Ecancermedicalscience. 2020, 14, 1023.
|
[35] |
Zeng, Z.; Lan, T.X.; Wei, Y.Q.; Wei, X.W. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 2022, 9, 12–27.
|
[36] |
Zhang, X.L.; Cao, D.; Liu, J.N.; Zhang, Q.; Liu, M.J. Efficacy and safety of Lianhua Qingwen combined with conventional antiviral Western Medicine in the treatment of coronavirus disease (covid-19) in 2019: protocol for a systematic review and meta-analysis. Medicine. 2020, 99, e21404.
|
[37] |
CDC Weekly, C. Protocol for prevention and control of COVID-19 (edition 6). China CDC Week. 2020, 2, 321–326.
|
[38] |
Ziuzia-Januszewska, L.; Januszewski, M. Pathogenesis of olfactory disorders in COVID-19. Brain Sci. 2022, 12, 449.
|
[39] |
Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; Ko, S.H.; Platt, A.P.; Burbelo, P.D.; Quezado, M.; Pittaluga, S.; Purcell, M.; Munster, V.J.; Belinky, F.; Ramos-Benitez, M.J.; Boritz, E.A.; Lach, I.A.; Herr, D.L.; Rabin, J.; Saharia, K.K.; Madathil, R.J.; Tabatabai, A.; Soherwardi, S.; McCurdy, M.T. NIH COVID-19 Autopsy Consortium.; Peterson, K.E.; Cohen, J.I.; de Wit, E.; Vannella, K.M.; Hewitt, S.M.; Kleiner, D.E.; Chertow, D.S. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022, 612, 758–763.
|
[40] |
Kandemirli, S.G.; Altundag, A.; Yildirim, D.; Tekcan Sanli, D.E.; Saatci, O. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad. Radiol. 2021, 28, 28–35.
|
[41] |
Liu, M.; Gao, Y.; Yuan, Y.; Yang, K.L.; Shi, S.Z.; Tian, J.H.; Zhang, J.H. Efficacy and safety of herbal medicine (Lianhuaqingwen) for treating COVID-19: a systematic review and meta-analysis. Integr. Med. Res. 2021, 10, 100644.
|
[42] |
Wang, P.; Zhang, H.Y.; Liu, Y.M. Research progress on chemical constituents, Pharmacological effects and clinical application of volatile oil From Magnolia liliflora. China Pharmacy. 2022, 33, 378–384.
|
[43] |
Kimura, Y.; Okuda, H.; Baba, K. Histamine-release effectors from Angelicadahurica var. Dahurica Root. J. Nat. Prod. 1997, 60, 249–251.
|
[44] |
Zou, J.Y.; Su, W.; Pan, Y.; Cui, J. Chemical Components and Pharmacological Action for Angelica dahurica Sinensis and Predictive Analysis on its Q-marker. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology. This article can be found online at http://kns.cnki.net/kcms/detail/11.5699.R.20230914.1254. 004.html.
|
[45] |
Hu, Y.L. Preliminary study on effects of Xixin oil on blood histamine and pathomorphological change in nasal mucosa in Guinea pigs with allergic rhinitis. Chin. J. Exp. Tradit. Med. Form. 2011, 17, 149–151.
|
[46] |
Zhang, X. The China Association of Chinese Medicine released the expert consensus on the treatment of common diseases after COVID-19 became negative with traditional Chinese medicine. J. Tradit. Chin. Med. Manage. 2023, 31, 7.
|
[47] |
Prasansuklab, A.; Theerasri, A.; Rangsinth, P.; Sillapachaiyaporn, C.; Chuchawankul, S.; Tencomnao, T. Anti-COVID-19 drug candidates: a review on potential biological activities of natural products in the management of new coronavirus infection. J. Tradit. Complement. Med. 2021, 11, 144–157.
|
[48] |
Tiboc-Schnell, C.N.; Filip, G.A.; Man, S.C.; Decea, N.; Moldovan, R.; Opris, R.; Sas, V.; Tabaran, F. Quercetin attenuates naso-sinusal inflammation and inflammatory response in lungs and brain on an experimental model of acute rhinosinusitis in rats. J. Physiol. Pharmacol. 2020, 71, 10.26402/jpp.2020.4.03.
|
[49] |
Theoharides, T.C. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. BioFactors. 2020, 46, 306–308.
|
[50] |
Shawan, M.M.A.K.; Halder, S.K.; Hasan, M.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. Bull Natl. Res. Cent. 2021, 45, 27.
|
[51] |
Di Stadio, A.; D'Ascanio, L.; Vaira, L.A.; Cantone, E.; De Luca, P.; Cingolani, C.; Motta, G.; De Riu, G.; Vitelli, F.; Spriano, G.; De Vincentiis, M.; Camaioni, A.; La Mantia, I.; Ferreli, F.; Brenner, M.J. Ultramicronized palmitoylethanolamide and luteolin supplement combined with olfactory training to treat post-COVID-19 olfactory impairment: a multi-center double-blinded randomized placebo- controlled clinical trial. Curr. Neuropharmacol. 2022, 20, 2001–2012.
|
[52] |
Yang, Y.; Tan, X.; Xu, J.G.; Wang, T.Y.; Liang, T.Y.; Xu, X.; Ma, C.C.; Xu, Z.M.; Wang, W.J.; Li, H.Y.; Shen, H.T.; Li, X.; Dong, W.L.; Chen, G. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage. Biomed Pharmacother. 2020, 126, 1–12.
|
[53] |
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358.
|
[54] |
Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res. Bull. 2015, 119, 1–11.
|
[55] |
Lee, M.H.; Perl, D.P.; Nair, G.; Li, W.X.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; Masliah, E.; Horkayne-Szakaly, I.; Jones, R.; Stram, M.N.; Moncur, J.; Hefti, M.; Folkerth, R.D.; Nath, A. Microvascular injury in the brains of patients with covid-19. N Engl. J. Med. 2021, 384, 481–483.
|
[56] |
Sun, Y.X.; Tao, Q.; Cao, Y.; Yang, T.T.; Zhang, L.; Luo, Y.F.; Wang, L. Kaempferol has potential anti-coronavirus disease 2019 (COVID-19) targets based on bioinformatics analyses and pharmacological effects on endotoxin-induced cytokine storm. Phytother. Res. 2023, 37, 2290–2304.
|
[57] |
Ahmadian, R.; Rahimi, R.; Bahramsoltani, R. Kaempferol: an encouraging flavonoid for COVID-19. Boletin Latinoamericano Y Del Caribe De Plantas Med. Y Aromat. 2020, 19, 492–494.
|
[58] |
Jung, H.W.; Jung, J.K.; Cho, C.W.; Kang, J.S.; Park, Y.K. Antiallergic effect of KOB03, a polyherbal medicine, on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse and human mast cells. J. Ethnopharmacol. 2012, 142, 684–693.
|
[59] |
Oh, H.A.; Han, N.R.; Kim, M.J.; Kim, H.M.; Jeong, H.J. Evaluation of the effect of kaempferol in a murine allergic rhinitis model. Eur. J. Pharmacol. 2013, 718, 48–56.
|
[60] |
Groeger, A.L.; Cipollina, C.; Cole, M.P.; Woodcock, S.R.; Bonacci, G.; Rudolph, T.K.; Rudolph, V.; Freeman, B.A.; Schopfer, F.J. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat. Chem. Biol. 2010, 6, 433–441.
|
[61] |
Ricke-Hoch, M.; Stelling, E.; Lasswitz, L.; Gunesch, A.P.; Kasten, M.; Zapatero-Belinchón, F.J.; Brogden, G.; Gerold, G.; Pietschmann, T.; Montiel, V.; Balligand, J.L.; Facciotti, F.; Hirsch, E.; Gausepohl, T.; Elbahesh, H.; Rimmelzwaan, G.F.; Höfer, A.; Kühnel, M.P.; Jonigk, D.; Eigendorf, J.; Tegtbur, U.; Mink, L.; Scherr, M.; Illig, T.; Schambach, A.; Pfeffer, T.J.; Hilfiker, A.; Haverich, A.; Hilfiker-Kleiner, D. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS One. 2021, 16, e0255335.
|
[62] |
FitzGerald, G.A. Misguided drug advice for COVID-19. Science. 2020, 367, 1434.
|
[63] |
Qi, L.J.; Wang, R.Z.; Gao, S.; Chen, X.J.; Zhang, X.; Zhang, Y.P. Molecular mechanisms underlying the effects of bimin Kang mixture on allergic rhinitis: network pharmacology and RNA sequencing analysis. Biomed Res. Int. 2022, 2022, 7034078.
|
[64] |
Gold, P.W. The PPARg system in major depression: pathophysiologic and therapeutic implications. Int. J. Mol. Sci. 2021, 22, 9248.
|
[65] |
Fukui, N.; Honda, K.; Ito, E.; Ishikawa, K. Peroxisome proliferator-activated receptor γ negatively regulates allergic rhinitis in mice. Allergol. Int. 2009, 58, 247–253.
|
[66] |
Kang, H.J.; Cinn, Y.G.; Hwang, S.J.; Won Chae, S.; Woo, J.S.; Lee, S.H.; Lee, H.M. Up-regulation of peroxisome proliferator-activated receptor γ in perennial allergic rhinitis. Arch. Otolaryngol. 2006, 132, 1196–1200.
|
[67] |
Carboni, E.; Carta, A.R.; Carboni, E. Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? Med. Hypotheses. 2020, 140, 109776.
|
[68] |
Mukherjee, J.J.; Gangopadhyay, K.K.; Subir, R. Use of pioglitazone in people with type 2 diabetes mellitus with coronavirus disease 2019 (COVID-19): boon or bane? Diabetes Metab. Syndr. 2020, 14, 829–831.
|
[69] |
Josep, B.R.; Rong, S.; Roberts Paul, C.; Raquel, H. PPAR-γ activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol. 2010, 23, 343–352.
|
[70] |
Francisqueti-Ferron, F.V.; Garcia, J.L.; Ferron, A.J.T.; Nakandakare-Maia, E.T.; Gregolin, C.S.; das Chagas Silva, J.P.; dos Santos, K.C.; Lo, Â.T.C.; Siqueira, J.S.; de Mattei, L.; de Paula, B.H.; Sarzi, F.; de Almeida Silva, C.C.V.; Moreto, F.; Costa, M.R.; Ferreira, A.L.A.; Minatel, I.O.; Corrêa, C.R. Gamma-oryzanol as a potential modulator of oxidative stress and inflammation via PPAR-y in adipose tissue: a hypothetical therapeutic for cytokine storm in COVID-19? Mol. Cell Endocrinol. 2021, 520, 111095.
|
[1] | 张啸, 钟叶, 胡永生, 王博龙. 《肿瘤良方大全》中肝癌用药规律挖掘及其核心药对机制分析[J]. 中国药学(英文版), 2024, 33(7): 647-658. |
[2] | 韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524. |
[3] | 李双, 孙璐瑶, 尤斯涵, 张佳燚, 殷宏艳, 曹津萌, 刘心星, 郭春燕, 刘喜富. 基于网络药理学探讨桃红四物汤治疗阿尔茨海默症的主要有效成分及其作用机制[J]. 中国药学(英文版), 2024, 33(6): 525-542. |
[4] | 徐云玲, 贺蛟龙. 基于网络药理学探讨白英干预类风湿性关节炎的潜在作用机制研究[J]. 中国药学(英文版), 2024, 33(6): 559-570. |
[5] | 崔旭阳, 姬中杰, 时潘扬, 魏晓岑, 马玉宁, 邢梦真. 基于网络药理学探讨复方苦参注射液治疗黑色素瘤的作用机制[J]. 中国药学(英文版), 2024, 33(5): 448-457. |
[6] | 刘芳琳, 张春娟, 沈秋跃, 周昔程, 赵越, 富冯峰, 刘芳. 基于网络药理学和分子对接技术探讨参芪扶正注射液治疗慢性阻塞性肺疾病的潜在药理学机制[J]. 中国药学(英文版), 2024, 33(4): 339-351. |
[7] | 王晓航, 王乐, 肖銮娟, 芦春斌. 芒柄花黄素通过雌激素受体抑制前列腺增生[J]. 中国药学(英文版), 2024, 33(3): 216-229. |
[8] | 王思宇, 周淑伟, 喻斌. 基于网络药理学-分子对接探析灭幽汤"异病同治"慢性萎缩性胃炎和胃溃疡的作用机制[J]. 中国药学(英文版), 2024, 33(3): 258-271. |
[9] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[10] | 陈云丽, 颜仁梁, 李丽莎, 张亚敏, 徐小妹, 卢雪花, 徐榕青, 林文津. 基于网络药理学和分子对接探讨陈皮治疗阿尔茨海默病的作用机制[J]. 中国药学(英文版), 2024, 33(2): 142-155. |
[11] | 张弘, 张莎莎, 王焕芸, 梁越, 武世奎, 孙丽君, 夏慧敏, 白云霞, 张慧文. 基于血清药物化学和网络药理学的荜茇抗胃溃疡药效物质基础分析[J]. 中国药学(英文版), 2024, 33(2): 156-168. |
[12] | 王丹. 基于网络药理学探讨中药逍遥丸治疗失眠的药理机制[J]. 中国药学(英文版), 2024, 33(2): 169-177. |
[13] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[14] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[15] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||