[1] |
Shi, R.Y.; Zhang, K.X.; Zhou, X.J.; Yang, K.; Wang, X.X.; Zhang, L.Q. Network Meta-analysis of efficacy of seven Chinese patent medicines in treatment of inflammatory response in chronic glomerulonephritis. China J. Tradit. Chin. Materia Medica. 2023, 48, 6200–6215.
|
[2] |
Dong, B.; Huang, X.Z.; Fu, Y.F.; Liu, D.D.; Liu, Z.H.; Wang, X.S. Clinical study on the treatment of nephritic proteinuria with acupuncture combined with acupuncture. J. Practical Tradit. Chin. Med. Int. Med. 2023, 37, 108–110.
|
[3] |
Yang, Q.C.; Liu, Z.Z.; Mao, W. Comparison of Clinical Effect of Huangqi Injection and Danshen Injection for Chronic Glomerulonephritis. J. Liaoning Univ. Tradit. Chin. Med. 2012, 14, 165–167.
|
[4] |
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[5] |
Zhou, M.; Liu, M. Based on network pharmacology and molecular docking, the mechanism of coix seed-Zhejiang fritillary mother drug in the treatment of chronic atrophic gastritis was investigated. Global Tradit. Chin. Med. 2023, 16, 1118–1126.
|
[6] |
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504.
|
[7] |
Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.L.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W.Z. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221.
|
[8] |
Xue, Y.L.; Xiang, Y.L.; Qiong, J.C.; Lu, C.; Jin, H.; Yue, L.; Yan, Q.L. Analysis of Acupoint Selection Rules of Acupuncture and Moxibustion for Treating Chronic Glomerulonephritis Based on Data Mining. J. Guangzhou Univ. Tradit. Chin. Med. 2023, 40, 1036–1042.
|
[9] |
Li, X.M.; Ren, X.M.; Cheng, A.X.; Ma, H.J. Professor MA Hongjie’s Thoughts of TCM Treatment of Chronic Glomerulonephritis. Basic Tradit. Chin. Med. 2022, 1, 6–9.
|
[10] |
Zhang, J.S.; Yu, S.H.; Qi, L.; Jing, L.; Yu, M.L. Based on network pharmacology and molecular docking, the mechanism of action of astragalus-danshen combination in the treatment of diabetic ulcers was studied. Ginseng Res. 2023, 35, 6–12.
|
[11] |
Li, X.Y.; Cui, T.; Jiang, Y.H.; Li, Wei. Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma Herbal Pair Reduces Hypertensive Renal Damage by Down-regulating MiR-466b-5p. World Chin. Med. 2023, 18, 613–619.
|
[12] |
Zeng, G.X.; Lin, J.R.; Wu, Y.C.; Zou, C.; Gui, D.K.; Lin, Q.Z. An Exploration of Therapeutic Mechanism of Sanqi Oral Liquid in Chronic Glomerulonephritis Based on Network Pharmacology. Chin. J. Integr. Tradit. West. Nephrol. 2020, 21, 397–402.
|
[13] |
Dos Santos, M.; Poletti, P.T.; Favero, G.; Stacchiotti, A.; Bonomini, F.; Montanari, C.C.; Bona, S.R.; Marroni, N.P.; Rezzani, R.; Veronese, F.V. Protective effects of quercetin treatment in a pristane-induced mouse model of lupus nephritis. Autoimmunity. 2018, 51, 69–80.
|
[14] |
Xie, X.J.; Ran, J.Y.; Xiong, W.; Shi, C.Y.; Fang, J.G.; Wang, W.Q. Study on the Mechanism of Fuzheng Qiangjin Tablet in the Treatment of Myasthenia Gravis Based on Network Pharmacology. Guiding J. Tradit. Chin. Med. Pharm. 2022, 28, 22–30.
|
[15] |
Varfolomeev, E.; Vucic, D. Intracellular regulation of TNF activity in health and disease. Cytokine. 2018, 101, 26–32.
|
[16] |
Holtmann, M.H.; Neurath, M.F. Differential TNF-signaling in chronic inflammatory disorders. Curr. Mol. Med. 2004, 4, 439–444.
|
[17] |
Hartl, M.; Bader, A.G.; Bister, K. Molecular targets of the oncogenic transcription factor Jun. Curr. Cancer Drug Targets. 2003, 3, 41–55.
|
[18] |
Wu, W.; Zhang, W.; Choi, M.; Zhao, J.J.; Gao, P.; Xue, M.; Singer, H.A.; Jourd’heuil, D.; Long, X.C. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019, 22, 101137.
|
[19] |
Nabrdalik, K.; Gumprecht, J.; Adamczyk, P.; Górczyńska-Kosiorz, S.; Zywiec, J.; Grzeszczak, W. Association of rs1800471 polymorphism of TGFB1 gene with chronic kidney disease occurrence and progression and hypertension appearance. Arch. Med. Sci. 2013, 9, 230–237.
|
[20] |
Dong, L.; Zhao, S.; Li, W.C.; Li, Y.J.; Lian, R.; He, F. CCL20 regulates inflammatory progression in diabetic nephropathy through IL-17 signaling pathway. J. New Med. 2023, 54, 403–409.
|
[21] |
Yong, S.; Gao, Y.J.; Xu, Y.Z.; Hu, Y.; Jia, R.H.; Long, Q.F. Role and mechanism of IL-17 and Th17 cell signaling pathways in renal tissue inflammation in mice under high altitude hypoxia environment. J. Shanxi Med. Univ. 2023, 54, 791–799.
|
[22] |
Jiang, T.; Teng, S.C.; An, X.F.; Yi, L. An overview of the intervention of traditional Chinese medicine in AGEs-RAGE signaling pathway to improve diabetic nephropathy. Global Tradit. Chin. Med. 2022, 15, 173–178.
|
[23] |
Tian, Y.J.; Yuan, B.; Liang, T. Influence of lycopene on vascular calcification in rats with chronic kidney failure by inhibiting AGEs/RAGE signaling pathway. China Pharmacist. 2022, 25,1898–1903.
|