[1] Xu, L.; Yang, Y.; Gao, L.X.; Zhao, J.H.; Cai, Y.L.; Huang, J.; Jing, S.; Bao, X.H.; Wang, Y.; Gao, J.W.; Xu, H.W.; Fan, X.T. Protective effects of resveratrol on the inhibition of hippocampal neurogenesis induced by ethanol during early postnatal life. Biochim. Biophys. Acta. 2015, 1852, 1298-1310.
[2] Stępień, T.; Tarka, S.; Chutorański, D.; Felczak, P.; Acewicz, A.; Wierzba-Bobrowicz, T. Neurogenesis in adult human brain after hemorrhage and ischemic stroke. Folia Neuropathol. 2018, 56, 293-300.
[3] Bettio, L.E.B.; Rajendran, L.; Gil-Mohapel, J. The effects of aging in the hippocampus and cognitive decline. Neurosci. Biobehav. Rev. 2017, 79, 66-86.
[4] Spencer, T.E.; Bazer, F.W. Uterine and placental factors regulating conceptus growth in domestic animals. J. Anim. Sci. 2004, 82, E4-13.
[5] Takano, K.; Hall, K.; Fryklund, L.; Holmgren, A.; Sievertsson, H.; Uthne, K. The binding of insulin and somatomedin A to human placental membrane. Acta Endocrinol. 1975, 80, 14-31.
[6] Tomlinson, M.S.; Bommarito, P.A.; Martin, E.M.; Smeester, L.; Fichorova, R.N.; Onderdonk, A.B.; Kuban, K.C.K.; O’Shea, T.M.; Fry, R.C. Microorganisms in the human placenta are associated with altered CpG methylation of immune and inflammation-related genes. PLoS One. 2017, 12, e0188664.
[7] Naninck, E.F.; Hoeijmakers, L.; Kakava-Georgiadou, N.; Meesters, A.; Lazic, S.E.; Lucassen, P.J.; Korosi, A. Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus. 2015, 25, 309-328.
[8] Gao, J.; He, H.; Jiang, W.J.; Chang, X.Y.; Zhu, L.P.; Luo, F.; Zhou, R.; Ma, C.H.; Yan, T.H. Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer's disease. Behav. Brain Res. 2015, 293, 27-33.
[9] Hsia, C.H.; Wang, C.H.; Kuo, Y.W.; Ho, Y.J.; Chen, H.L. Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damages in BALB/cJ mice. Br. J. Nutr. 2012, 107, 1787-1792.
[10] Choi, H.Y.; Kim, S.W.; Kim, B.; Lee, H.N.; Kim, S.J.; Song, M.; Kim, S.; Kim, J.; Kim, Y.B.; Kim, J.H.; Cho, S.G. Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of estradiol. PLoS One. 2014, 9, e99421.
[11] Lee, J.H.; Yoon, Y.M.; Lee, S.H. GRP78 regulates apoptosis, cell survival and proliferation in 5-fluorouracil-resistant SNUC5 colon cancer cells. Anticancer Res. 2017, 37, 4943-4951.
[12] Zhou, X.; Xing, X.M.; Zhang, S.P.; Liu, L.L.; Wang, C.Q.; Li, L.; Ji, Q.X.; Liu, H.M. Glucose-regulated protein 78 contributes to the proliferation and tumorigenesis of human colorectal carcinoma via AKT and ERK pathways. Oncol. Rep. 2016, 36, 2723-2730.
[13] Sun, S.; Lee, D.; Ho, A.S.; Pu, J.K.; Zhang, X.Q.; Lee, N.P.; Day, P.J.; Lui, W.M.; Fung, C.F.; Leung, G.K. Inhibition of prolyl 4-hydroxylase, beta polypeptide (P4HB) attenuates temozolomide resistance in malignant glioma via the endoplasmic reticulum stress response (ERSR) pathways. Neuro-oncology. 2013, 15, 562-577.
[14] Rhodes, C.E.; Varacallo, M. Physiology, Oxygen Transport. StatPearls. 2019.
[15] Hempstead, B.L. Brain-derived neurotrophic factor: three ligands, many actions. Trans. Am. Clin. Climatol. Assoc. 2015, 126, 9-19.
[16] Easton, J.B.; Royer, A.R.; Middlemas, D.S. The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. J. Neurochem. 2006, 97, 834-845.
[17] Tong, L.Q.; Balazs, R.; Soiampornkul, R.; Thangnipon, W.; Cotman, C.W. Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol. Aging. 2008, 29, 1380-1393.
[18] Xu, D.F.; Lian, D.; Wu, J.; Liu, Y.; Zhu, M.J.; Sun, J.M.; He, D.K.; Li, L. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J. Neuroinflammation. 2017, 14, 156. |