中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (3): 216-229.DOI: 10.5246/jcps.2024.03.017
收稿日期:
2023-05-22
修回日期:
2023-10-19
接受日期:
2023-11-20
出版日期:
2024-03-31
发布日期:
2024-03-31
通讯作者:
芦春斌
Xiaohang Wang, Le Wang, Luanjuan Xiao, Chunbin Lu*()
Received:
2023-05-22
Revised:
2023-10-19
Accepted:
2023-11-20
Online:
2024-03-31
Published:
2024-03-31
Contact:
Chunbin Lu
Supported by:
摘要:
本研究通过网络药理学的方法预测核心靶点, 再进行分子对接和动物实验来探讨芒柄花黄素的抗良性前列腺增生(BPH)作用。从Swiss ADME数据库筛选有效活性成分并进行药物靶点预测。收集TTD、GeneCards和DrugBank数据库中收录的良性前列腺增生的疾病靶点。将药物靶点与疾病靶点取交集靶点, 使用交集靶点构建PPI网络并进行GO和KEGG富集分析, 利用AutodockVina软件进行分子对接芒柄花黄素的雌激素活性。建立小鼠良性前列腺增生模型, 分为: 对照组、增生组、2.5 mg/kg、5 mg/kg、10 mg/kg、5 mg/kg + fulvestrant (20 mg/kg/week)、10 mg/kg + fulvestrant (20 mg/kg/week)组。HE染色和Masson染色观察病理变化。QPCR检测雌激素受体和细胞周期基因表达量。芒柄花黄素与良性前列腺增生存在35个潜在的蛋白靶点, 核心靶点有ER-α、EGFR、ER-β、CYP19A1、AChE和PPARA。GO和KEGG富集分析表明, 芒柄花黄素的作用靶点主要涉及细胞对雌二醇刺激的反应、雌激素生物合成、类固醇激素受体活性和类固醇结合等过程相关过程, 以及类固醇激素的生物合成和雌激素信号通路。分子对接显示, 与ER-α相比, 芒柄花黄素与ER-β有更好的亲和力。前列腺增生模型小鼠用芒柄花黄素处理后病理学切片结果显示, 芒柄花黄素能明显地抑制小鼠良性前列腺增生, 而雌激素受体抑制剂(氟维司群)显著抑制芒柄花黄素的治疗效果。QPCR结果表明, 芒柄花黄素可以降低ER-β的表达, 并提高前列腺组织的ER-α。同时, 芒柄花黄素处理后, 与细胞周期相关的CDK1、cyclin A2、CDK2和 cyclin B1的表达水平出现下降, 而雌激素受体抑制剂处理后, 这一现象被抑制。综上所述, 网络药理学分析和动物实验结果发现芒柄花黄素通过雌激素受体阻滞细胞周期进程抑制前列腺增生发展。
Supporting:
王晓航, 王乐, 肖銮娟, 芦春斌. 芒柄花黄素通过雌激素受体抑制前列腺增生[J]. 中国药学(英文版), 2024, 33(3): 216-229.
Xiaohang Wang, Le Wang, Luanjuan Xiao, Chunbin Lu. Formononetin inhibits benign prostatic hyperplasia through estrogen receptors[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(3): 216-229.
Figure 6. Formononetin or estradiol docking with the molecules of ER-β or ER-α. (A) The structure of estradiol; (B) The structure of formononetin; (C) Molecular docking of formononetin with ER-β; (D) Molecular docking of formononetin with ER-α; (E) Molecular docking of estradiol with ER-β; (F) Molecular docking of estradiol with ER-α.
Figure 7. Prostatic index. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to the control group; #P < 0.05, ##P < 0.01, and ###P < 0.001 compared to the TP group; %P < 0.05, %%P < 0.01; nsP > 0.05.
Figure 10. The mRNA expression of ER-α and ER-β. (A) mRNA expression of ER-α; (B) mRNA expression of ER-β. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to the control group; #P < 0.05, ##P < 0.01, and ##P < 0.001 compared to the TP group; nsP > 0.05 compared to the TP group.
Figure 11. The mRNA expression of CDK2, CDK1, cyclin B1 and cyclin A2. (A) mRNA expression of CDK2; (B) mRNA expression of CDK1; (C) mRNA expression of cyclin B1; (D) mRNA expression of cyclin A2. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to the control group; #P < 0.05, ##P < 0.01, and ###P < 0.001 compared to the TP group; &P < 0.05, &&P < 0.01; nsP > 0.05 compared to the TP group.
[1] |
Liu, D.; Bai X.; Liu G.M.; Fan, X.L.; Tang, T.; Yu, S.J.; Liu, Z.J.; Jiang, B.; Liu, Z.Q. Research Progress on pathogenesis of Benign Prostatic Hyperplasia. J. Clin. Med. Pract. 2021, 25, 112–117.
|
[2] |
Ren, Y.; Wang, Y.; Zheng, R.W. Current Situation of Etiology and Pathogenesis of Benign Prostatic Hyperplasia. World Chin. Med. 2018, 13, 2372–2376.
|
[3] |
Egan, K.B. The epidemiology of benign prostatic hyperplasia associated with lower urinary tract symptoms: prevalence and incident rates. Urol. Clin. North Am. 2016, 43, 289–297.
|
[4] |
Shah, A.; Shah, A.A.; Nandakumar, K.; Lobo, R. Mechanistic targets for BPH and prostate cancer–a review. Rev. Environ. Health. 2021, 36, 261–270.
|
[5] |
Devlin, C.M.; Simms, M.S.; Maitland, N.J. Benign prostatic hyperplasia—what do we know? BJU Int. 2021, 127, 389–399.
|
[6] |
McVary, K.T. A review of combination therapy in patients with benign prostatic hyperplasia. Clin. Ther. 2007, 29, 387–398.
|
[7] |
Paba, S.; Frau, R.; Godar, S.C.; Devoto, P.; Marrosu, F.; Bortolato, M. Steroid 5α-reductase as a novel therapeutic target for schizophrenia and other neuropsychiatric disorders. Curr. Pharm. Des. 2011, 17, 151–167.
|
[8] |
Lepor, H.; Kazzazi, A.; Djavan, B. α-Blockers for benign prostatic hyperplasia. Curr. Opin. Urol. 2012, 22, 7–15.
|
[9] |
Allkanjari, O.; Vitalone, A. What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci. 2015, 126, 42–56.
|
[10] |
Mu, H.; Bai, Y.H.; Wang, S.T.; Zhu, Z.M.; Zhang, Y.W. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine. 2009, 16, 314–319.
|
[11] |
Aboushanab, S.A.; Khedr, S.M.; Gette, I.F.; Danilova, I.G.; Kolberg, N.A.; Ravishankar, G.A.; Ambati, R.R.; Kovaleva, E.G. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit. Rev. Food Sci. Nutr. 2023, 63, 261–287.
|
[12] |
Machado Dutra, J.; Espitia, P.J.P.; Andrade Batista, R. Formononetin: biological effects and uses—A review. Food Chem. 2021, 359, 129975.
|
[13] |
Li, T.Y.; Zhao, X.G.; Mo, Z.N.; Huang, W.H.; Yan, H.B.; Ling, Z.A.; Ye, Y. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cell. Physiol. Biochem. 2014, 34, 1351–1358.
|
[14] |
Barshir, R.; Fishilevich, S.; Iny-Stein, T.; Zelig, O.; Mazor, Y.; Guan-Golan, Y.; Safran, M.; Lancet, D. GeneCaRNA: a comprehensive gene-centric database of human non-coding RNAs in the GeneCards suite. J. Mol. Biol. 2021, 433, 166913.
|
[15] |
Wang, Y.X.; Zhang, S.; Li, F.C.; Zhou, Y.; Zhang, Y.; Wang, Z.W.; Zhang, R.Y.; Zhu, J.; Ren, Y.X.; Tan, Y.; Qin, C.; Li, Y.H.; Li, X.X.; Chen, Y.Z.; Zhu, F. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020, 48, D1031–D1041.
|
[16] |
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.F.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.A.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082.
|
[17] |
Kim, S.; Chen, J.; Cheng, T.J.; Gindulyte, A.; He, J.; He, S.Q.; Li, Q.L.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395.
|
[18] |
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612.
|
[19] |
Daina, A.; Zoete, V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016, 11, 1117–1121.
|
[20] |
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
|
[21] |
Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.L.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W.Z. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221.
|
[22] |
Liao, G.; Lee, P.M.Y.; Zhao, S.; Ho, W.M.; Lam, A.T.; Lee, M.K.; Poon, P.K.M.; Ng, S.S.M.; Li, W.; He, Y.; Wang, F.; Wong, S.Y.S.; Ng, C.F.; Tse, L.A. Joint effect between bisphenol A and alcohol consumption on benign prostatic hyperplasia, A case-control study in Hong Kong Chinese males. Prostate. 2021, 81, 1214–1224.
|
[23] |
Liao, G.; Lee, P.M.Y.; Zhao, S.; Ho, W.M.; Lam, A.T.; Lee, M.K.; Poon, P.K.M.; Ng, S.S.M.; Li, W.; He, Y.; Wang, F.; Wong, S.Y.S.; Ng, C.F.; Tse, L.A. Effects of Alcohol on Benign Prostate Hyperplasia induced by Testosterone Propionate in Mice. Chin. J. App. Physiol. 2018, 34, 501–506.
|
[24] |
Kuiper, G.G.J.M.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.Å. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998, 139, 4252–4263.
|
[25] |
Jang, H.; Ha, U.S.; Kim, S.J.; Yoon, B.I.; Han, D.S.; Yuk, S.M.; Kim, S.W. Anthocyanin extracted from black soybean reduces prostate weight and promotes apoptosis in the prostatic hyperplasia-induced rat model. J. Agric. Food Chem. 2010, 58, 12686–12691.
|
[26] |
Launer, B.; McVary, K.; Ricke, W.; Lloyd, G. The rising worldwide impact of benign prostatic hyperplasia. BJU Int. 2021, 127, 722–728.
|
[27] |
Choi, D.H.; Kim, J.Y.; An, J.H.; Sung, S.H.; Kong, H.S. Effects of Saussurea costus on apoptosis imbalance and inflammation in benign prostatic hyperplasia. J. Ethnopharmacol. 2021, 279, 114349.
|
[28] |
Ma, J.J.; Gharaee-Kermani, M.; Kunju, L.; Hollingsworth, J.M.; Adler, J.; Arruda, E.M.; Macoska, J.A. Prostatic fibrosis is associated with lower urinary tract symptoms. J. Urol. 2012, 188, 1375–1381.
|
[29] |
Zeng, H.Z.; He, Y.; Yu, Y.; Zhang, J.S.; Zeng, X.N.; Gong, F.T.; Liu, Q.; Yang, B. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis by mast cell suppression. Mol. Med. Rep. 2017, 17, 918–924.
|
[30] |
Conte, A.; Procaccini, C.; Iannelli, P.; Kisslinger, A.; De Amicis, F.; Pierantoni, G.M.; Mancini, F.P.; Matarese, G.; Tramontano, D. Effects of Resveratrol on p66Shc phosphorylation in cultured prostate cells. Transl. Med. UniSa. 2016, 13, 47–58.
|
[31] |
El-Bakoush, A.; Olajide, O.A. Formononetin inhibits neuroinflammation and increases estrogen receptor beta (ERβ) protein expression in BV2 microglia. Int. Immunopharmacol. 2018, 61, 325–337.
|
[32] |
Bonkhoff, H.; Berges, R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur. Urol. 2009, 55, 533–542.
|
[33] |
Park, K.J.; Krishnan, V.; O’Malley, B.W.; Yamamoto, Y.; Gaynor, R.B. Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol. Cell. 2005, 18, 71–82.
|
[34] |
Łukasik, P.; Załuski, M.; Gutowska, I. Cyclin-dependent kinases (CDK) and their role in diseases development-review. Int. J. Mol. Sci. 2021, 22, 2935.
|
[1] | 王思宇, 周淑伟, 喻斌. 基于网络药理学-分子对接探析灭幽汤"异病同治"慢性萎缩性胃炎和胃溃疡的作用机制[J]. 中国药学(英文版), 2024, 33(3): 258-271. |
[2] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[3] | 陈云丽, 颜仁梁, 李丽莎, 张亚敏, 徐小妹, 卢雪花, 徐榕青, 林文津. 基于网络药理学和分子对接探讨陈皮治疗阿尔茨海默病的作用机制[J]. 中国药学(英文版), 2024, 33(2): 142-155. |
[4] | 张弘, 张莎莎, 王焕芸, 梁越, 武世奎, 孙丽君, 夏慧敏, 白云霞, 张慧文. 基于血清药物化学和网络药理学的荜茇抗胃溃疡药效物质基础分析[J]. 中国药学(英文版), 2024, 33(2): 156-168. |
[5] | 王丹. 基于网络药理学探讨中药逍遥丸治疗失眠的药理机制[J]. 中国药学(英文版), 2024, 33(2): 169-177. |
[6] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[7] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[8] | 张格第, 刘庚鑫, 晏子友. 基于meta分析和网络药理学理冲汤(丸)治疗癌症的疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(9): 720-735. |
[9] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[10] | 闫焕, 王健, 付浩, 杨敏, 曲苗, 方志娥. 基于网络药理学探讨大柴胡汤治疗高脂血症的潜在作用靶点和机制[J]. 中国药学(英文版), 2023, 32(6): 446-459. |
[11] | 王孟亚, 张宽友, 陈馨, 付浩, 彭守春. 基于网络药理学方法探讨犀角地黄汤治疗系统性红斑狼疮的作用机制[J]. 中国药学(英文版), 2023, 32(5): 351-359. |
[12] | 沈广志, 崔新刚, 那志敏, 邹玉龙, 邹桂华. 利用网络药理学探究淫羊藿治疗性功能障碍的药理作用机制[J]. 中国药学(英文版), 2023, 32(5): 379-391. |
[13] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[14] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
[15] | 张玉倩, 牛海英, 靳怡然. 基于网络药理学技术探讨长春花治疗癌症的作用机制[J]. 中国药学(英文版), 2023, 32(11): 911-922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||