中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (11): 1040-1057.DOI: 10.5246/jcps.2024.11.075
苏靖靖1, 苏康康2, 宋艳平1, 郝丽慧3, 王杏4, 杨林泉4, 王超4, 陈淑霞2,*(), 谷剑2,*()
收稿日期:
2024-02-16
修回日期:
2024-04-06
接受日期:
2024-05-08
出版日期:
2024-12-10
发布日期:
2024-12-10
通讯作者:
陈淑霞, 谷剑
Jingjing Su1, Kangkang Su2, Yanping Song1, Lihui Hao3, Xing Wang4, Linquan Yang4, Chao Wang4, Shuxia Chen2,*(), Jian Gu2,*()
Received:
2024-02-16
Revised:
2024-04-06
Accepted:
2024-05-08
Online:
2024-12-10
Published:
2024-12-10
Contact:
Shuxia Chen, Jian Gu
摘要:
急性心肌梗死(AMI)预后不良。通心络胶囊(TXL)是目前备受关注的中成药之一。本研究旨在探索通心络胶囊对AMI患者的潜在药理价值, 并寻找相关的免疫靶点。在GSE66360数据集中, 确定了172个高表达基因和16个低表达基因, 利用TCMSP和HERB数据库筛选出803个TXL的关键靶点, 并利用Venn图获得两者的交集基因。基因本体(GO)和京都基因组与基因组百科全书(KEGG)富集分析显示, 这些基因主要与NF-kappa B信号通路、TNF信号通路、IL-17信号通路和其他信号通路相关。用"Cibersort"比较了AMI和对照样本的免疫浸润水平差异, 并采用spearman秩相关分析了免疫细胞与交集基因的相关性。发现肥大细胞活化和中性粒细胞参与了TXL治疗AMI的病理机制。结合"Cibersort"算法, 选择加权基因共表达网络分析(WGCNA)中与22种免疫细胞最显著相关的基因模块进行后续分析。最终, 获得8个Hub基因可作为TXL治疗AMI的潜在新型分子标记。免疫细胞浸润对TXL治疗AMI有重要影响。本研究增加了我们对TXL药理机制的了解, 为开发新的AMI治疗靶点提供了新的思路。
Supporting:
苏靖靖, 苏康康, 宋艳平, 郝丽慧, 王杏, 杨林泉, 王超, 陈淑霞, 谷剑. 基于生物信息学的通心络胶囊治疗急性心肌梗死的研究[J]. 中国药学(英文版), 2024, 33(11): 1040-1057.
Jingjing Su, Kangkang Su, Yanping Song, Lihui Hao, Xing Wang, Linquan Yang, Chao Wang, Shuxia Chen, Jian Gu. Bioinformatics-based investigation of the therapeutic potential of Tongxinluo capsule in acute myocardial infarction[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(11): 1040-1057.
Figure 1. (A) Volcano diagram shows the DEGs in Control and AMI groups using the Xiantao Website. (B) The Heatmap shows the first 50 DEGs in the AMI and Control group using the Xiantao Website. (C) Venn diagram of intersection targets of TXL-related DEGs using the Xiantao Website. (D) PPI network. Nodes represent different proteins. Edges represent protein-protein associations, and the line thickness indicates the strength of data support.
Figure 2. The enrichment pathway analysis of TXL-related DEGs. (A) The significant GO enriched by TXL-related DEGs using the Xiantao Website. (B) The pathways network of the hub genes using the Xiantao Website. (C) The GO enrichment pathway analysis of TXL-related DEGs using WebGestalt.
Figure 4. (A) The immune cell score for GSE66360 was estimated by CIBERSORT and visualized using the Xiantao Website. (B) Heatmap of the composition of 22 types of immune cells across samples. "ns" means P ≥ 0.05. *P < 0.05, **P < 0.01, and ***P < 0.001.
Figure 6. The association between signature genes and significantly different immune cell infiltration. "N.S." means P ≥ 0.05. *P < 0.05, **P < 0.01, and ***P < 0.001.
Figure 9. (A and B) Correlation scatter diagram between green-yellow module genes and phenotypes of immune cell infiltration. (C) Venn map from the two types of screening.
[1] |
Danchin, N.; Popovic, B.; Puymirat, E.; Goldstein, P.; Belle, L.; Cayla, G.; Roubille, F.; Lemesle, G.; Ferrières, J.; Schiele, F.; Simon, T.; Investigators, T.F.M. Five-year outcomes following timely primary percutaneous intervention, late primary percutaneous intervention, or a pharmaco-invasive strategy in ST-segment elevation myocardial infarction: the FAST-MI programme. Eur. Heart J. 2020, 41, 858–866.
|
[2] |
Thrane, P.G.; Kristensen, S.D.; Olesen, K.K.W.; Mortensen, L.S.; Bøtker, H.E.; Thuesen, L.; Hansen, H.S.; Abildgaard, U.; Engstrøm, T.; Andersen, H.R.; Maeng, M. 16-year follow-up of the Danish Acute Myocardial Infarction 2 (DANAMI-2) trial: primary percutaneous coronary intervention vs. fibrinolysis in ST-segment elevation myocardial infarction. Eur. Heart J. 2020, 41, 847–854.
|
[3] |
Taqueti, V.R.; Mitchell, R.N.; Lichtman, A.H. Protecting the pump: controlling myocardial inflammatory responses. Annu. Rev. Physiol. 2006, 68, 67–95.
|
[4] |
Granger, D.N.; Korthuis, R.J. Physiologic mechanisms of postischemic tissue injury. Annu. Rev. Physiol. 1995, 57, 311–332.
|
[5] |
Vinten-Johansen, J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc. Res. 2004, 61, 481–497.
|
[6] |
Yang, Y.J.; Li, X.D.; Chen, G.H.; Xian, Y.; Zhang, H.T.; Wu, Y.; Yang, Y.M.; Wu, J.H.; Wang, C.T.; He, S.H.; Wang, Z.; Wang, Y.X.; Wang, Z.F.; Liu, H.; Wang, X.P.; Zhang, M.Z.; Zhang, J.; Li, J.; An, T.; Guan, H.; Li, L.; Shang, M.X.; Yao, C.; Han, Y.L.; Zhang, B.L.; Gao, R.L.; Peterson, E.D.; Investigators, C.A. Traditional Chinese medicine compound (Tongxinluo) and clinical outcomes of patients with acute myocardial infarction: the CTS-AMI randomized clinical trial. JAMA. 2023, 330, 1534–1545.
|
[7] |
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res. 2013, 41, D991–D995.
|
[8] |
Fang, S.S.; Dong, L.; Liu, L.; Guo, J.C.; Zhao, L.H.; Zhang, J.Y.; Bu, D.C.; Liu, X.K.; Huo, P.P.; Cao, W.C.; Dong, Q.Y.; Wu, J.R.; Zeng, X.X.; Wu, Y.; Zhao, Y. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021, 49, D1197–D1206.
|
[9] |
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Biomolecules. 2014, 6, 13.
|
[10] |
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nat. Commun. 2021, 49, D480–D489.
|
[11] |
Liao, Y.X.; Wang, J.; Jaehnig, E.J.; Shi, Z.A.; Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205.
|
[12] |
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612.
|
[13] |
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.G.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Meth. 2015, 12, 453–457.
|
[14] |
Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008, 9, 559.
|
[15] |
White, H.D.; Thygesen, K.; Alpert, J.S.; Jaffe, A.S. Clinical implications of the Third Universal Definition of Myocardial Infarction. Heart. 2014, 100, 424–432.
|
[16] |
Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014, 11, 255–265.
|
[17] |
Westman, P.C.; Lipinski, M.J.; Luger, D.; Waksman, R.; Bonow, R.O.; Wu, E.; Epstein, S.E. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 2016, 67, 2050–2060.
|
[18] |
Mezzaroma, E.; Toldo, S.; Farkas, D.; Seropian, I.M.; Van Tassell, B.W.; Salloum, F.N.; Kannan, H.R.; Menna, A.C.; Voelkel, N.F.; Abbate, A. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA. 2011, 108, 19725–19730.
|
[19] |
Li, M.; Li, C.; Chen, S.; Sun, Y.; Hu, J.; Zhao, C.; Qiu, R.; Zhang, X.; Zhang, Q.; Tian, G.; Shang, H. Potential effectiveness of Chinese patent medicine Tongxinluo capsule for secondary prevention after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2018, 9, 830.
|
[20] |
Qi, Y.; Liu, W.; Yan, X.; Zhang, C.; Zhang, C.; Liu, L.; Zheng, X.; Suo, M.; Ti, Y.; Ni, M.; Zhang, M.; Bu, P. Tongxinluo may alleviate inflammation and improve the stability of atherosclerotic plaques by changing the intestinal flora. Front. Pharmacol. 2022, 13, 805266.
|
[21] |
Li, G.; Xu, Q.; Han, K.; Yan, W.; Huang, C. Experimental evidence and network pharmacology-based analysis reveal the molecular mechanism of Tongxinluo capsule administered in coronary heart diseases. Biosci. Rep. 2020, 40, BSR20201349.
|
[22] |
Yu, H.; Lin, L.B.; Zhang, Z.Q.; Zhang, H.Y.; Hu, H.B. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209.
|
[23] |
Yang, S.; Li, F.; Lu, S.; Ren, L.; Bian, S.; Liu, M.; Zhao, D.; Wang, S.; Wang, J. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-kappaB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo. J. Ethnopharmacol. 2022, 283, 114739.
|
[24] |
Wu, Z.; Zhang, Z.; Lei, Z.; Lei, P. CD14: biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019, 48, 24–31.
|
[25] |
An, D.; Hao, F.; Zhang, F.; Kong, W.; Chun, J.; Xu, X.; Cui, M.Z. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation. J. Biol. Chem. 2017, 292, 14391–14400.
|
[26] |
de Carvalho, D.C.; Fonseca, F.A.H.; Izar, M.C.O.; Silveira, A.L.P.A.; Tuleta, I.D.; do Amaral, J.B.; Neves, L.M.; Bachi, A.L.L.; França, C.N. Monocytes presenting a pro-inflammatory profile persist in patients submitted to a long-term pharmacological treatment after acute myocardial infarction. Front. Physiol. 2022, 13, 1056466.
|
[27] |
Choudhary, D.; Jansson, I.; Stoilov, I.; Sarfarazi, M.; Schenkman, J.B. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab. Dispos. Biol. Fate Chem. 2004, 32, 840–847.
|
[28] |
Qi, L.; Qi, Q.B.; Prudente, S.; Mendonca, C.; Andreozzi, F.; di Pietro, N.; Sturma, M.; Novelli, V.; Mannino, G.C.; Formoso, G.; Gervino, E.V.; Hauser, T.H.; Muehlschlegel, J.D.; Niewczas, M.A.; Krolewski, A.S.; Biolo, G.; Pandolfi, A.; Rimm, E.; Sesti, G.; Trischitta, V.; Hu, F.; Doria, A. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA. 2013, 310, 821–828.
|
[29] |
Eelen, G.; Dubois, C.; Cantelmo, A.R.; Goveia, J.; Brüning, U.; DeRan, M.; Jarugumilli, G.; van Rijssel, J.; Saladino, G.; Comitani, F.; Zecchin, A.; Rocha, S.; Chen, R.Y.; Huang, H.L.; Vandekeere, S.; Kalucka, J.; Lange, C.; Morales-Rodriguez, F.; Cruys, B.; Treps, L.; Ramer, L.; Vinckier, S.; Brepoels, K.; Wyns, S.; Souffreau, J.; Schoonjans, L.; Lamers, W.H.; Wu, Y.; Haustraete, J.; Hofkens, J.; Liekens, S.; Cubbon, R.; Ghesquière, B.; Dewerchin, M.; Gervasio, F.L.; Li, X.R.; van Buul, J.D.; Wu, X.; Carmeliet, P. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature. 2018, 561, 63–69.
|
[30] |
Falk, E.; Nakano, M.; Bentzon, J.F.; Finn, A.V.; Virmani, R. Update on acute coronary syndromes: the pathologists’ view. Eur. Heart J. 2013, 34, 719–728.
|
[31] |
Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediat. Inflamm. 2020, 2020, 3872367.
|
[32] |
Cozen, A.E.; Moriwaki, H.; Kremen, M.; DeYoung, M.B.; Dichek, H.L.; Slezicki, K.I.; Young, S.G.; Véniant, M.; Dichek, D.A. Macrophage-targeted overexpression of urokinase causes accelerated atherosclerosis, coronary artery occlusions, and premature death. Circulation. 2004, 109, 2129–2135.
|
[33] |
Pan, Q.; Hui, D.; Hu, C. Associations of CD14 variants with the triglyceride levels and risk of myocardial infarction in an Eastern Chinese Han population. Int. Immunopharmacol. 2021, 99, 108041.
|
[34] |
Majchrzak-Gorecka, M.; Majewski, P.; Grygier, B.; Murzyn, K.; Cichy, J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev. 2016, 28, 79–93.
|
[35] |
Nernpermpisooth, N.; Prompunt, E.; Kumphune, S. An in vitro endothelial cell protective effect of secretory leukocyte protease inhibitor against simulated ischaemia/reperfusion injury. Exp. Ther. Med. 2017, 14, 5793–5800.
|
[36] |
Sarecka-Hujar, B.; Zak, I.; Krauze, J. Interactions between rs5498 polymorphism in the ICAM1 gene and traditional risk factors influence susceptibility to coronary artery disease. Clin. Exp. Med. 2009, 9, 117–124.
|
[37] |
Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 2018, 122, 1722–1740.
|
[38] |
Sager, H.B.; Heidt, T.; Hulsmans, M.; Dutta, P.; Courties, G.; Sebas, M.; Wojtkiewicz, G.R.; Tricot, B.; Iwamoto, Y.; Sun, Y.; Weissleder, R.; Libby, P.; Swirski, F.K.; Nahrendorf, M. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation. 2015, 132, 1880–1890.
|
[39] |
Ngkelo, A.; Richart, A.; Kirk, J.A.; Bonnin, P.; Vilar, J.; Lemitre, M.; Marck, P.; Branchereau, M.; Le Gall, S.; Renault, N.; Guerin, C.; Ranek, M.J.; Kervadec, A.; Danelli, L.; Gautier, G.; Blank, U.; Launay, P.; Camerer, E.; Bruneval, P.; Menasche, P.; Heymes, C.; Luche, E.; Casteilla, L.; Cousin, B.; Rodewald, H.R.; Kass, D.A.; Silvestre, J.S. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J. Exp. Med. 2016, 213, 1353–1374.
|
[40] |
Jung, K.; Kim, P.; Leuschner, F.; Gorbatov, R.; Kim, J.K.; Ueno, T.; Nahrendorf, M.; Yun, S.H. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res. 2013, 112, 891–899.
|
[41] |
Li, W.; Hsiao, H.M.; Higashikubo, R.; Saunders, B.T.; Bharat, A.; Goldstein, D.R.; Krupnick, A.S.; Gelman, A.E.; Lavine, K.J.; Kreisel, D. Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight. 2016, 1, 87315.
|
[42] |
Liu, J.Q.; Zhao, M.; Zhang, Z.; Cui, L.Y.; Zhou, X.; Zhang, W.; Chu, S.F.; Zhang, D.Y.; Chen, N.H. Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol. Sin. 2020, 41, 523–534.
|
[43] |
Ma, Y.G.; Mouton, A.J.; Lindsey, M.L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl. Res. 2018, 191, 15–28.
|
[44] |
Chen, Y.; Waqar, A.B.; Nishijima, K.; Ning, B.; Kitajima, S.; Matsuhisa, F.; Chen, L.; Liu, E.; Koike, T.; Yu, Y.; Zhang, J.; Chen, Y.E.; Sun, H.; Liang, J.; Fan, J. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. Eur. Heart J. Case Rep. 2020, 24, 4261–4274.
|
[45] |
Im, D.S. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules. 2020, 10, E444.
|
[46] |
Sun, K.; Su, C.; Li, W.; Gong, Z.; Sha, C.; Liu, R. Quality markers based on phytochemical analysis and anti-inflammatory screening: an integrated strategy for the quality control of Dalbergia odorifera by UHPLC-Q-Orbitrap HRMS. Phytomedicine. 2021, 84, 153511.
|
[47] |
Ham, S.A.; Hwang, J.S.; Kang, E.S.; Yoo, T.; Lim, H.H.; Lee, W.J.; Paek, K.S.; Seo, H.G. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species. Biosci. Biotechnol. Biochem. 2015, 79, 760–766.
|
[48] |
Tao, Y.; Wang, Y. Bioactive sesquiterpenes isolated from the essential oil of Dalbergia odorifera T. Chen. Fitoterapia. 2010, 81, 393–396.
|
[49] |
Fan, Z.M.; Wang, D.Y.; Yang, J.M.; Lin, Z.X.; Lin, Y.X.; Yang, A.L.; Fan, H.; Cao, M.; Yuan, S.Y.; Liu, Z.J.; Zhou, X.; Wang, Y.H. Dalbergia odorifera extract promotes angiogenesis through upregulation of VEGFRs and PI3K/MAPK signaling pathways. J. Ethnopharmacol. 2017, 204, 132–141.
|
[50] |
Li, X.; Wu, L.; Liu, W.; Jin, Y.; Chen, Q.; Wang, L.; Fan, X.; Li, Z.; Cheng, Y. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PLoS One. 2014, 9, e95004.
|
[51] |
Cai, M.; Yu, Z.; Wang, L.; Song, X.; Zhang, J.; Zhang, Z.; Zhang, W.; Li, W.; Xiang, J.; Cai, D. Tongxinluo reduces brain edema and inhibits post-ischemic inflammation after middle cerebral artery occlusion in rats. J. Ethnopharmacol. 2016, 181, 136–145.
|
[52] |
Wang, C.H.; Wang, R.; Cheng, X.M.; He, Y.Q.; Wang, Z.T.; Wu, C.; Cao, J. Comparative pharmacokinetic study of paeoniflorin after oral administration of decoction of Radix Paeoniae Rubra and Radix Paeoniae Alba in rats. J. Ethnopharmacol. 2008, 117, 467–472.
|
[1] | 李钦青, 辛彦利, 刘朴霖, 李凯文, 景彩芳, 张学兰, 贺文彬. 通过生物信息学分析女贞子治疗糖尿病肾病的作用机制[J]. 中国药学(英文版), 2024, 33(11): 1025-1039. |
[2] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[3] | 赵雅慧, 赵莉, 赵娟, 卢继业, 田薇, 胡金朋, 苏彬, 付立华, 郭然. 基于生物信息学分析探讨地塞米松通过上调TNFAIP3减轻烟雾吸入性急性肺损伤炎症反应的机制[J]. 中国药学(英文版), 2022, 31(9): 689-697. |
[4] | 玉米提·塔西甫拉提, 周越, 韩晟, 杜可欣, 杨瑶瑶, 胡琳, 郑波, 管晓东, 海沙尔江·吾守尔, 史录文. 中国二级和三级医院具有抗菌效果的中成药使用及费用变化趋势: 2011–2015年药品采购数据分析[J]. 中国药学(英文版), 2022, 31(4): 298-307. |
[5] | 姚昆鹏, 张道平, 刘起立, 蔡虎志, 陈青扬, 陈新宇. 整合生物信息学鉴定与分析急性心肌梗死的特征基因及潜在中药预测[J]. 中国药学(英文版), 2022, 31(12): 912-927. |
[6] | 蒋维维, 全海燕, 何璐, 江兴. 基于生物信息学的CCTs对人肝细胞癌的诊断和预后价值[J]. 中国药学(英文版), 2022, 31(10): 782-797. |
[7] | 林洁莹, 刘京京, 齐亚宁, 王春明. 含吗啡中成药的滥用风险研究[J]. 中国药学(英文版), 2017, 26(2): 139-146. |
[8] | 钟晗, 辛宏, 朱依谆*. 中药脑必通对急性心肌梗死大鼠的心脏保护作用[J]. , 2010, 19(3): 186-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||