中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (1): 41-54.DOI: 10.5246/jcps.2025.01.004
杨帆1, 李蕊1, 刘雯婷1, 孙舰2, 赵承孝1, 冯秀娥1, 李青山1,2,*()
收稿日期:
2024-08-12
修回日期:
2024-09-20
接受日期:
2024-11-07
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
李青山
Fan Yang1, Rui Li1, Wenting Liu1, Jian Sun2, Chengxiao Zhao1, Xiue Feng1, Qingshan Li1,2,*()
Received:
2024-08-12
Revised:
2024-09-20
Accepted:
2024-11-07
Online:
2025-02-20
Published:
2025-02-20
Contact:
Qingshan Li
Supported by:
摘要:
本研究旨在评价 2,4ʹ,5ʹ-三羟基-5,2ʹ-二溴二苯甲酮(LM49)对角叉菜胶诱导足肿胀模型小鼠的抗炎作用及潜在机制。小鼠随机分为6组, 采用1%角叉菜胶溶液构建小鼠足肿胀模型。运用病理学、转录组学、流式细胞术、RT-qPCR、Western blot、分子对接等方法, 研究LM49在角叉菜胶诱导的足肿胀模型中的抗炎作用及其机制。结果显示LM49可明显减轻小鼠足部水肿形成, 降低血清促炎因子 IL-1β和TNF-α水平, 提高血清抑炎因子IL-10水平。转录组学分析显示, LM49组中有453个差异表达基因, KEGG和GO分析表明, LM49抑制NF-κB信号通路, 并影响其他一些免疫炎症信号通路。分子对接揭示了LM49在NF-κB信号通路中的8个关键靶点。Western blot结果证实, LM49能抑制小鼠足组织中p65和IκB-α的磷酸化, 以及MYD88和TLR4的表达。本研究结果为进一步研究LM49的抗炎作用及分子机制提供了重要依据。
Supporting:
杨帆, 李蕊, 刘雯婷, 孙舰, 赵承孝, 冯秀娥, 李青山. 多酚化合物LM49对角叉菜胶诱导足肿胀小鼠的抗炎作用及机制研究[J]. 中国药学(英文版), 2025, 34(1): 41-54.
Fan Yang, Rui Li, Wenting Liu, Jian Sun, Chengxiao Zhao, Xiue Feng, Qingshan Li. Unveiling the anti-inflammatory effects and mechanisms of LM49 in a carrageenan-induced acute inflammation model[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(1): 41-54.
Figure 1. Anti-inflammatory capacity of LM49 on Carr-induced paw edema in mice (n = 10 mice per group). (A) Effect of LM49 on Carr-induced mouse paw swelling. (B) Effect of LM49 on Carr-induced mouse paw swelling at 4 h. (C) Pathological observations of paw tissues stained with H&E staining. Inflammatory cell infiltration and ruined hepatic cords (400× magnification). The quantitative data represent mean ± SD (n = 3). #P < 0.05 for model group vs. normal group; *P < 0.05 for LM49 group and indometacin group vs. model group.
Figure 2. Effects of LM49 on lymphocyte subsets in Carr-induced edema. (A) RT-qPCR analysis of mRNA expression of IL-10, IL-1β, TNF-α, and PGE2 in Carr-induced swollen mouse paw tissues. (B) The CD3+CD4+ and CD3+CD8+ subsets of T cells were assessed by flow cytometry. (C) ELISA of protein expression of IL-10, IL-1β and TNF-α levels in mice. The quantitative data represent mean ± SD (n = 6). #P < 0.05 for model group vs. normal group; *P < 0.05 for LM49 group and indometacin group vs. model group.
Figure 3. Expression analysis of DEGs between model and LM49 groups. (A–B) Volcanic map of DEGs among groups. (C–D) Venn diagram of DEGs among groups. (F) Genomes enrichment analysis of up-/down-regulated DEGs. (G) KEGG enrichment analysis of up-/down-regulated DEGs. (E) Heatmap analysis of model and LM49-H group DEGs.
Figure 4. Molecular docking analysis. The blue graphic represents the LM49 molecular structure. Purple graphics are protein-activated sites. Green graphics are amino acid residues. The red graphic indicates hydrogen bonding. (A) LM49 docked with related protein molecules in the NF-κB pathway. (B) LM49 docked with related protein molecules in other related pathways.
Figure 5. Effects of LM49 on NF-κB signaling pathway proteins. (A) Expression of p65, p-p65, IκB-α, and p-IκB-α proteins was assessed by Western blotting analysis. (B) The expression of TLR4 and MYD88 proteins was assessed using Western blotting analysis. The quantitative data represent mean ± SD (n = 3). #P < 0.05 for model group vs. normal group; *P < 0.05 for LM49 group and indometacin group vs. model group.
[1] |
Yadav, S.S.; Nair, R.R.; Singh, K. Editorial: Cause or effect: role of inflammation in metabolic disorder. Front. Endocrinol. 2024, 15, 1359605.
|
[2] |
Sikking, M.A.; Stroeks, S.L.V.M.; Marelli-Berg, F.; Heymans, S.R.B.; Ludewig, B.; Verdonschot, J.A.J. Immunomodulation of myocardial fibrosis. JACC Basic Transl. Sci. 2023, 8, 1477–1488.
|
[3] |
Zhao, R.M.; Wang, B.X.; Wang, D.S.; Wu, B.H.; Ji, P.Y.; Tan, D.Y. Oxyberberine prevented lipopolysaccharide-induced acute lung injury through inhibition of mitophagy. Oxid. Med. Cell Longev. 2021, 2021, 6675264.
|
[4] |
Zhang, X.R.; Retyunskiy, V.; Qiao, S.; Zhao, Y.; Tzeng, C.M. Alloferon-1 ameliorates acute inflammatory responses in λ-carrageenan-induced paw edema in mice. Sci. Rep. 2022, 12, 16689.
|
[5] |
Gonzalez, A.L.; Dungan, M.M.; Smart, C.D.; Madhur, M.S.; Doran, A.C. Inflammation resolution in the cardiovascular system: arterial hypertension, atherosclerosis, and ischemic heart disease. Antioxid. Redox Signal. 2024, 40, 292–316.
|
[6] |
Koenig, W.; Sager, H.B. Inflammation and cardiovascular disease: new epidemiologic data and their potential implications for anti-cytokine therapy. Eur. J. Prev. Cardiol. 2023, 30, 1728–1730.
|
[7] |
Guo, X.Y.; Shen, P.M.; Shao, R.J.; Hong, T.; Liu, W.Z.; Shen, Y.; Su, F.; Wang, Q.L.; He, B. Efferocytosis-inspired nanodrug treats sepsis by alleviating inflammation and secondary immunosuppression. Biomed. Mater. 2023, 18, 055020.
|
[8] |
Feng, Y.Y.; Wang, Z.J.; Pang, H. Role of metformin in inflammation. Mol. Biol. Rep. 2023, 50, 789–798.
|
[9] |
Dai, C.L.; Yang, H.X.; Liu, Q.P.; Rahman, K.; Zhang, H. CXCL6: a potential therapeutic target for inflammation and cancer. Clin. Exp. Med. 2023, 23, 4413–4427.
|
[10] |
Monteleone, G.; Moscardelli, A.; Colella, A.; Marafini, I.; Salvatori, S. Immune-mediated inflammatory diseases: common and different pathogenic and clinical features. Autoimmun. Rev. 2023, 22, 103410.
|
[11] |
Bai, J.J.; Qian, B.L.; Cai, T.Y.; Chen, Y.F.; Li, T.X.; Cheng, Y.L.; Wu, Z.M.; Liu, C.; Ye, M.X.; Du, Y.C.; Fu, W.G. Aloin attenuates oxidative stress, inflammation, and CCl4-induced liver fibrosis in mice: possible role of TGF-β/smad signaling. J. Agric. Food Chem. 2023, 71, 19475–19487.
|
[12] |
Liu, Z.W.; Gao, T.H.; Yang, Y.; Meng, F.X.; Zhan, F.P.; Jiang, Q.C.; Sun, X. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules. 2019, 24, 4286.
|
[13] |
Borsani, B.; De Santis, R.; Perico, V.; Penagini, F.; Pendezza, E.; Dilillo, D.; Bosetti, A.; Zuccotti, G.V.; D’Auria, E. The role of carrageenan in inflammatory bowel diseases and allergic reactions: where do we stand? Nutrients. 2021, 13, 3402.
|
[14] |
Xiang, L.; Huang, Q.W.; Chen, T.; He, Q.M.; Yao, H.; Gao, Y.X. Ethanol extract of Paridis rhizoma attenuates carrageenan-induced paw swelling in rats by inhibiting the production of inflammatory factors. BMC Complement. Med. Ther. 2023, 23, 437.
|
[15] |
Almukainzi, M.; El-Masry, T.A.; Selim, H.; Saleh, A.; El-Sheekh, M.; Makhlof, M.E.M.; El-Bouseary, M.M. New insight on the cytoprotective/antioxidant pathway Keap1/Nrf2/HO-1 modulation by Ulva intestinalis extract and its selenium nanoparticles in rats with carrageenan-induced paw edema. Mar. Drugs. 2023, 21, 459.
|
[16] |
Salem, S.; Leghouchi, E.; Soulimani, R.; Bouayed, J. Reduction of paw edema and liver oxidative stress in carrageenan-induced acute inflammation by Lobaria pulmonaria and Parmelia caperata, lichen species, in mice. Int. J. Vitam. Nutr. Res. 2021, 91, 143–151.
|
[17] |
Annamalai, P.; Thangam, E.B. Vitex trifolia L. modulates inflammatory mediators via down-regulation of the NF-κB signaling pathway in carrageenan-induced acute inflammation in experimental rats. J. Ethnopharmacol. 2022, 298, 115583.
|
[18] |
Zhang, Q.; Bang, S.S.; Chandra, S.; Ji, R.R. Inflammation and infection in pain and the role of GPR37. Int. J. Mol. Sci. 2022, 23, 14426.
|
[19] |
Khan, M.M.; Ali, S.A.; Qazi, Y.; Khan, S.W.; Shaikh, M.A. Anti-inflammatory effects of Chrozophora plicata uncovered using network pharmacology and in-vivo carrageenan paw edema model. Heliyon. 2024, 10, e24617.
|
[20] |
Lukova, P.; Apostolova, E.; Baldzhieva, A.; Murdjeva, M.; Kokova, V. Fucoidan from Ericaria crinita alleviates inflammation in rat paw edema, downregulates pro-inflammatory cytokine levels, and shows antioxidant activity. Biomedicines. 2023, 11, 2511.
|
[21] |
El Awady, M.E.; Mohamed, S.S.; Abo Elsoud, M.M.; Mahmoud, M.G.; Anwar, M.M.; Ahmed, M.M.; Eltaher, A.; Magdeldin, S.; Attallah, A.; Elhagry, A.E.; Abdelhamid, S.A. Insight into antioxidant and anti-inflammatory effects of marine bacterial natural exopolysaccharide (EPSSM) using carrageenan-induced paw edema in rats. Sci. Rep. 2024, 14, 5113.
|
[22] |
Han, S.; Li, S.Y.; Li, J.L.; He, J.; Wang, Q.Q.; Gao, X.; Yang, S.L.; Li, J.J.; Yuan, R.; Zhong, G.Y.; Gao, H.W. Hederasaponin C inhibits LPS-induced acute kidney injury in mice by targeting TLR4 and regulating the PIP2/NF-κB/NLRP3 signaling pathway. Phytother. Res. 2023, 37, 5974–5990.
|
[23] |
Li, R.; Jia, H.Y.; Si, M.; Li, X.W.; Ma, Z.; Zhu, Y.; Sun, W.Y.; Zhu, F.Q.; Luo, S.Y. Loureirin B protects against cerebral ischemia/reperfusion injury through modulating M1/M2 microglial polarization via STAT6/NF-kappaB signaling pathway. Eur. J. Pharmacol. 2023, 953, 175860.
|
[24] |
Wang, F.; Li, R.; Wang, W,; Zhou, X.; Liu, M.; Zhao, J.; Wen, A.; Wang, W.; Jia, Y. α-Boswellic acid ameliorates acute kidney injury by inhibiting the TLR4-mediated inflammatory pathway. J. Chin. Pharm. Sci. 2023, 32. 539–550.
|
[25] |
Yang, F.; Cai, H.H.; Feng, X.E.; Li, Q.S. A novel marine halophenol derivative attenuates lipopolysaccharide-induced inflammation in RAW264.7 cells via activating phosphoinositide 3-kinase/Akt pathway. Pharmacol. Rep. 2020, 72, 1021–1031.
|
[26] |
Yang, F.; Cai, H.H.; Zhang, X.; Sun, J.; Feng, X.E.; Yuan, H.X.; Zhang, X.Y.; Xiao, B.G.; Li, Q.S. An active marine halophenol derivative attenuates lipopolysaccharide-induced acute liver injury in mice by improving M2 macrophage-mediated therapy. Int. Immunopharmacol. 2021, 96, 107676.
|
[27] |
Sen’kova, A.V.; Savin, I.A.; Odarenko, K.V.; Salomatina, O.V.; Salakhutdinov, N.F.; Zenkova, M.A.; Markov, A.V. Protective effect of soloxolone derivatives in carrageenan- and LPS-driven acute inflammation: pharmacological profiling and their effects on key inflammation-related processes. Biomed. Pharmacother. 2023, 159, 114231.
|
[28] |
Aitbaba, A.; Kabdy, H.; Fatimzahra, A.; Azraida, H.; Abdoussadeq, O.; Aboufatima, R.; El Yazouli, L.; Sokar, Z.; Garzoli, S.; Chait, A. Anti-inflammatory and antiarthritic properties of Marrubium vulgare aqueous extract in an animal model. Nat. Prod. Res. 2024, 1–9.
|
[29] |
Zhou, X.; Guo, Z.L.; Liu, S.Z.; Chen, Z.J.; Wang, Y.; Yang, R.; Li, X.Z.; Ma, K.T. Transcriptomics and molecular docking reveal the potential mechanism of lycorine against pancreatic cancer. Phytomedicine. 2024, 122, 155128.
|
[30] |
Xu, X.; Li, L.; Zhang, Y.; Lu, X.; Xu, R.; Wu, S.; Lin, W.; Hypolipidemic effects of Alismatis Rhizoma decoction on the lipid profile in hyperlipidemia rats by RNA-sequencing. J. Chin. Pharm. Sci. 2021, 30, 409–420.
|
[31] |
Sun, Z.C.; Wang, Y.Q.; Pang, X.Y.; Wang, X.Y.; Zeng, H. Mechanisms of polydatin against spinal cord ischemia-reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation. Bioorg. Chem. 2023, 140, 106840.
|
[32] |
Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023, 13, 13398.
|
[33] |
Kumar, A.; Singh, V.K.; Kayastha, A.M. Molecular modeling, docking and dynamics studies of fenugreek (Trigonella foenum-graecum) α-amylase. J. Biomol. Struct. Dyn. 2023, 41, 9297–9312.
|
[34] |
Bisht, A.; Tewari, D.; Kumar, S.; Chandra, S. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Mol. Divers. 2024, 28, 1743–1763.
|
[1] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨六味地黄丸治疗卵巢早衰的作用机制[J]. 中国药学(英文版), 2024, 33(9): 805-818. |
[2] | 魏晓玉, 于路航, 李梦茹, 徐强. 网络药理学研究揭示连花清瘟-辛夷散联合治疗新冠后嗅觉损伤的潜在作用机制[J]. 中国药学(英文版), 2024, 33(7): 631-646. |
[3] | 韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524. |
[4] | 徐云玲, 贺蛟龙. 基于网络药理学探讨白英干预类风湿性关节炎的潜在作用机制研究[J]. 中国药学(英文版), 2024, 33(6): 559-570. |
[5] | 刘芳琳, 张春娟, 沈秋跃, 周昔程, 赵越, 富冯峰, 刘芳. 基于网络药理学和分子对接技术探讨参芪扶正注射液治疗慢性阻塞性肺疾病的潜在药理学机制[J]. 中国药学(英文版), 2024, 33(4): 339-351. |
[6] | 王晓航, 王乐, 肖銮娟, 芦春斌. 芒柄花黄素通过雌激素受体抑制前列腺增生[J]. 中国药学(英文版), 2024, 33(3): 216-229. |
[7] | 陈莹, 应海霞, 蔡婷婷, 徐云玲. 基于网络药理学分析落新妇干预类风湿性关节炎的作用机制及实验验证[J]. 中国药学(英文版), 2024, 33(3): 248-257. |
[8] | 王思宇, 周淑伟, 喻斌. 基于网络药理学-分子对接探析灭幽汤"异病同治"慢性萎缩性胃炎和胃溃疡的作用机制[J]. 中国药学(英文版), 2024, 33(3): 258-271. |
[9] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[10] | 陈云丽, 颜仁梁, 李丽莎, 张亚敏, 徐小妹, 卢雪花, 徐榕青, 林文津. 基于网络药理学和分子对接探讨陈皮治疗阿尔茨海默病的作用机制[J]. 中国药学(英文版), 2024, 33(2): 142-155. |
[11] | 邓茜, 彭紫凝, 晏蔚田, 刘念, 孟凡雨, 殷建美, 张昊喆, 王兴强, 彭江云. 苍术、黄柏在类风湿关节炎中的治疗机制: 网络药理学与GEO数据的综合分析[J]. 中国药学(英文版), 2024, 33(10): 943-964. |
[12] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨桂枝茯苓丸治疗子宫内膜异位症的作用机制[J]. 中国药学(英文版), 2023, 32(9): 704-719. |
[13] | 武东燕, 王小丹, 柴金苗, 李钦青, 李悦, 毕梅, 桂婉威, 曹慧敏. 基于网络药理学及实验验证探究当归补血汤治疗糖尿病性视网膜病变的作用机制[J]. 中国药学(英文版), 2023, 32(7): 527-538. |
[14] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[15] | 李雅静, 白雅雯, 杜宇, 严长宏, 麻春杰, 孙丽宁, 卜凤跃, 严昊阳. 玉屏风散治疗慢性肾小球肾炎的临床疗效评价及作用机制研究[J]. 中国药学(英文版), 2023, 32(12): 1006-1026. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||