[1] |
Jang, S.; Kwon, E.J.; Lee, J.J. Rheumatoid arthritis: pathogenic roles of diverse immune cells. Int. J. Mol. Sci. 2022, 23, 905.
|
[2] |
McInnes, I.B.; Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017, 389, 2328–2337.
|
[3] |
Kronzer, V.L. Etiologies of rheumatoid arthritis: update on mucosal, genetic, and cellular pathogenesis. Curr. Rheumatol. Rep. 2021, 23, 21.
|
[4] |
Dogra, S.; Khullar, G. Tumor necrosis factor-α antagonists: side effects and their management. Indian J. Dermatol. Venereol. Leprol. 2013, 79, 35–46.
|
[5] |
Kedia, A.K.; Mohansundaram, K.; Goyal, M.; Ravindran, V. Safety of long-term use of four common conventional disease modifying anti-rheumatic drugs in rheumatoid arthritis. J. Royal Coll. Physicians Edinb. 2021, 51, 237–245.
|
[6] |
Moon, T.C.; Lin, C.X.; Lee, J.S.; Kim, D.S.; Bae, K.; Son, K.H.; Kim, H.P.; Kang, S.S.; Son, J.K.; Chang, H.W. Antiinflammatory activity of astilbic acid from astilbe chinensis. Biol. Pharm. Bull. 2005, 28, 24–26.
|
[7] |
Tu, J.; Sun, H.X.; Ye, Y.P. Immunomodulatory and antitumor activity of triterpenoid fractions from the rhizomes of Astilbe chinensis. J. Ethnopharmacol. 2008, 119, 266–271.
|
[8] |
Hu, J.Y.; Yao, Z.; Xu, Y.Q.; Takaishi, Y.; Duan, H.Q. Triterpenes from Astilbe chinensis. J. Asian Nat. Prod. Res. 2009, 11, 236–242.
|
[9] |
Xue, Y.; Xu, X.M.; Yan, J.F.; Deng, W.L.; Liao, X. Chemical constituents from Astilbe chinensis. J. Asian Nat. Prod. Res. 2011, 13, 188–191.
|
[10] |
Kim, S.; Chen, J.; Cheng, T.J.; Gindulyte, A.; He, J.; He, S.Q.; Li, Q.L.; Shoemaker, B.A.; Thiessen, P.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2020, 49, D1388–D1395.
|
[11] |
Liu, X.F.; Ouyang, S.S.; Yu, B.; Liu, Y.B.; Huang, K.; Gong, J.Y.; Zheng, S.Y.; Li, Z.H.; Li, H.L.; Jiang, H.L. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, W609–W614.
|
[12] |
Morgat, A.; Lombardot, T.; Coudert, E.; Axelsen, K.; Neto, T.B.; Gehant, S.; Bansal, P.; Bolleman, J.; Gasteiger, E.; de Castro, E.; Baratin, D.; Pozzato, M.; Xenarios, I.; Poux, S.; Redaschi, N.; Bridge, A.; Consortium, T.U. Enzyme annotation in UniProtKB using rhea. Bioinformatics. 2020, 36, 1896–1901.
|
[13] |
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855.
|
[14] |
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016, 54, 1.30.1–1.30.33.
|
[15] |
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, 789–798.
|
[16] |
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, 607–613.
|
[17] |
Xu, Y.L.; Zhang, Z.M.; He, J.L.; Chen, Z.X. Immune effects of macrophages in rheumatoid arthritis: a bibliometric analysis from 2000 to 2021. Front. Immunol. 2022, 13, 903771.
|
[18] |
Weyand, C.M.; Klimiuk, P.A.; Goronzy, J.J. Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. Springer Semin. Immunopathol. 1998, 20, 5–22.
|
[19] |
Singh, J.A. Treatment guidelines in rheumatoid arthritis. Rheum. Dis. Clin. N Am. 2022, 48, 679–689.
|
[20] |
Gil, T.Y.; Jin, B.R.; Hong, C.; Park, J.; An, H.J. Astilbe Chinensis ethanol extract suppresses inflammation in macrophages via NF-κB pathway. BMC Complement. Med. Ther. 2020, 20, 302.
|