中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (6): 455-467.DOI: 10.5246/jcps.2021.06.035
• 【综述】 • 下一篇
汪子翔1,2, 张宜凡1, 杜望春1, 陈群力1, 姚虹1, 赵梅1,*()
收稿日期:
2020-11-18
修回日期:
2020-12-26
接受日期:
2021-03-10
出版日期:
2021-06-29
发布日期:
2021-06-29
通讯作者:
赵梅
作者简介:
基金资助:
Zixiang Wang1,2, Yifan Zhang1, Wangchun Du1, Qunli Chen1, Hong Yao1, Mei Zhao1,*()
Received:
2020-11-18
Revised:
2020-12-26
Accepted:
2021-03-10
Online:
2021-06-29
Published:
2021-06-29
Contact:
Mei Zhao
About author:
Zhao Mei received her Ph.D. from School of Pharmacy, Shanghai Jiao Tong University in 2010. She works at the Department of Pharmacy, Shanghai University of Medicine & Health Sciences, as an associate professor, and her research focuses on antitumor drugs and their drug delivery in oncology therapy. 赵梅, 2010年毕业于上海交通大学药学院, 获博士学位。现任上海健康医学院药学院副教授, 主要研究方向为抗肿瘤药物及其在肿瘤治疗中的药物递送。 |
摘要:
活性氧(Reactive oxygen species, ROS)广泛存在于生物体内。正常情况下的ROS水平保持较低浓度以维持正常细胞功能。研究发现, 正常组织中ROS水平的异常升高将诱导的肿瘤发生发展; 而进一步提高浓度的ROS则具有诱导肿瘤细胞凋亡等抗肿瘤作用。ROS已成为肿瘤防治研究的重要靶点之一。天然产物广泛存在于自然界, 具有影响ROS水平等广泛的药理活性。本文综述了近年来天然产物通过调节ROS水平来预防和治疗肿瘤的研究进展。
Supporting:
汪子翔, 张宜凡, 杜望春, 陈群力, 姚虹, 赵梅. 天然产物通过调节活性氧水平防治肿瘤的研究进展[J]. 中国药学(英文版), 2021, 30(6): 455-467.
Zixiang Wang, Yifan Zhang, Wangchun Du, Qunli Chen, Hong Yao, Mei Zhao. Recent progress of natural products in tumor prevention and treatment by regulating the reactive oxygen species level[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 455-467.
[1] |
Xu, Q.H.; He, C.L.; Xiao, C.S.; Chen, X.S. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 2016, 16, 635–646.
|
[2] |
Glasauer, A.; Chandel, N.S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 2014, 92, 90–101.
|
[3] |
Zhang, J.X.; Wang, X.L.; Vikash, V.; Ye, Q.; Wu, D.D.; Liu, Y.L.; Dong, W.G. ROS and ROS-mediated cellular signaling. Oxidat. Med. Cell Longev. 2016, 2016, 1–18.
|
[4] |
de Sá Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The roles of ROS in cancer heterogeneity and therapy. Oxidat. Med. Cell Longev. 2017, 2017, 2467940.
|
[5] |
Safe, S.; Kasiappan, R. Natural products as mechanism-based anticancer agents: sp transcription factors as targets. Phytother. Res. 2016, 30, 1723–1732.
|
[6] |
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017, 104, 144–164.
|
[7] |
Tong, L.Y.; Chuang, C.C.; Wu, S.Y.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25.
|
[8] |
Son, J.; Lyssiotis, C.A.; Ying, H.Q.; Wang, X.X.; Hua, S.J.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; Kang, Y.A.; Fleming, J.B.; Bardeesy, N.; Asara, J.M.; Haigis, M.C.; DePinho, R.A.; Cantley, L.C.; Kimmelman, A.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013, 496, 101–105.
|
[9] |
Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 2014, 39, 347–354.
|
[10] |
Yun, J.; Mullarky, E.; Lu, C.; Bosch, K.N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I.I.C.; Giannopoulou, E.G.; Rago, C.; Muley, A.; Asara, J.M.; Paik, J.; Elemento, O.; Chen, Z.; Pappin, D.J.; Dow, L.E.; Papadopoulos, N.; Gross, S.S.; Cantley, L.C. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015, 350, 1391–1396.
|
[11] |
Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.
|
[12] |
Yang, Y.; Karakhanova, S.; Werner, J.; Bazhin, A. Reactive oxygen species in cancer biology and anticancer therapy. Curr. Med. Chem. 2013, 20, 3677–3692.
|
[13] |
Klaunig, J.E.; Wang, Z.M.; Pu, X.Z.; Zhou, S.Y. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol. Appl. Pharmacol. 2011, 254, 86–99.
|
[14] |
Bazhin, A.V.; Philippov, P.P.; Karakhanova, S. Reactive oxygen species in cancer biology and anticancer therapy. Oxidat. Med. Cell Longev. 2016, 2016, 1–2.
|
[15] |
Ziech, D.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res. 2011, 711, 167–173.
|
[16] |
Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018, 8, 180002.
|
[17] |
Lee, H.H.; Park, C.; Jeong, J.W.; Kim, M.J.; Seo, M.J.; Kang, B.W.; Park, J.U.; Kim, G.Y.; Choi, B.T.; Choi, Y.H.; Jeong, Y.K. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen species-mediated mitochondrial death pathway. Int. J. Oncol. 2013, 42, 1036–1044.
|
[18] |
Ozben, T. Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci. 2007, 96, 2181–2196.
|
[19] |
Nottingham, E.; Sekar, V.; Mondal, A.; Safe, S.; Rishi, A.K.; Singh, M. The role of self-nanoemulsifying drug delivery systems of CDODA-me in sensitizing erlotinib-resistant non-small cell lung cancer. J. Pharm. Sci. 2020, 109, 1867–1882.
|
[20] |
Yang, C.; Peng, S.; Sun, Y.M.; Miao, H.T.; Lyu, M.; Ma, S.J.; Luo, Y.; Xiong, R.; Xie, C.H.; Quan, H. Development of a hypoxic nanocomposite containing high-Z element as 5-fluorouracil carrier activated self-amplified chemoradiotherapy co-enhancement. Royal Soc. Open Sci. 2019, 6, 181790.
|
[21] |
D’Arcy, M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592.
|
[22] |
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. et Biophys. Acta BBA-Mol. Cell Res. 2016, 1863, 2977–2992.
|
[23] |
Bhutia, S.K.; Behera, B.; Nandini Das, D.; Mukhopadhyay, S.; Sinha, N.; Panda, P.K.; Naik, P.P.; Patra, S.K.; Mandal, M.; Sarkar, S.; Menezes, M.E.; Talukdar, S.; Maiti, T.K.; Das, S.K.; Sarkar, D.; Fisher, P.B. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int. J. Cancer. 2016, 139, 457–466.
|
[24] |
Chen, Y.; Azad, M.B.; Gibson, S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009, 16, 1040–1052.
|
[25] |
Zhao, D.X.; Wang, C.C.; Tang, S.S.; Zhang, C.M.; Zhang, S.; Zhou, Y.; Xiao, X.L. Reactive oxygen species-dependent JNK downregulated olaquindox-induced autophagy in HepG2 cells. J. Appl. Toxicol. 2015, 35, 709–716.
|
[26] |
Villar, V.H.; Merhi, F.; Djavaheri-Mergny, M.; Durán, R.V. Glutaminolysis and autophagy in cancer. Autophagy. 2015, 11, 1198–1208.
|
[27] |
Thorburn, A.; Thamm, D.H.; Gustafson, D.L. Autophagy and cancer therapy. Mol. Pharmacol. 2014, 85, 830–838.
|
[28] |
Li, L.L.; Tan, J.; Miao, Y.Y.; Lei, P.; Zhang, Q. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol. Neurobiol. 2015, 35, 615–621.
|
[29] |
Nogueira, V.; Hay, N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 2013, 19, 4309–4314.
|
[30] |
Guo, F.; Yang, F.; Zhu, Y.H. Scutellarein from Scutellaria barbata induces apoptosis of human colon cancer HCT116 cells through the ROS-mediated mitochondria-dependent pathway. Nat. Prod. Res. 2019, 33, 2372–2375.
|
[31] |
Ye, F.F.; Wang, H.H.; Zhang, L.S.; Zou, Y.Y.; Han, H.L.; Huang, J. Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression. Tumour Biol. 2015, 36, 4731–4740.
|
[32] |
Chang, Z.Q.; Xing, J.C.; Yu, X.C. Curcumin induces osteosarcoma MG63 cells apoptosis via ROS/Cyto-C/Caspase-3 pathway. Tumour Biol. 2014, 35, 753–758.
|
[33] |
Wu, D.D.; Zhang, J.X.; Wang, J.; Li, J.; Liao, F.; Dong, W.G. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species. Tumour Biol. 2016, 37, 3451–3459.
|
[34] |
Wang, C.Y.; Lin, C.S.; Hua, C.H.; Jou, Y.J.; Liao, C.R.; Chang, Y.S.; Wan, L.; Huang, S.H.; Hour, M.J.; Lin, C.W. Cis-3-O-p-hydroxycinnamoyl ursolic acid induced ROS-dependent p53-mediated mitochondrial apoptosis in oral cancer cells. Biomol. Ther. 2019, 27, 54–62.
|
[35] |
Peng, K.T.; Chiang, Y.C.; Ko, H.H.; Chi, P.L.; Tsai, C.L.; Ko, M.I.; Lee, M.H.; Hsu, L.F.; Lee, C.W. Mechanism of lakoochin A inducing apoptosis of A375.S2 melanoma cells through mitochondrial ROS and MAPKs pathway. Int. J. Mol. Sci. 2018, 19, 2649.
|
[36] |
Wang, S.H.; Hu, Y.L.; Yan, Y.; Cheng, Z.K.; Liu, T.X. Sotetsuflavone inhibits proliferation and induces apoptosis of A549 cells through ROS-mediated mitochondrial-dependent pathway. BMC Complement. Altern. Med. 2018, 18, 235.
|
[37] |
Tan, B.L.; Norhaizan, M.E.; Chan, L.C. ROS-mediated mitochondrial pathway is required for manilkara zapota (L.) P. royen leaf methanol extract inducing apoptosis in the modulation of caspase activation and EGFR/NF-κB activities of HeLa human cervical cancer cells. Evid. Based Complement. Alternat. Med. 2018, 2018, 1–19.
|
[38] |
Yang, S.P.; Zhang, Y.G.; Luo, Y.; Xu, B.C.; Yao, Y.Q.; Deng, Y.L.; Yang, F.F.; Ye, T.H.; Wang, G.; Cheng, Z.Q.; Zheng, Y.; Xie, Y.M. Hinokiflavone induces apoptosis in melanoma cells through the ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed. Pharmacother. 2018, 103, 101–110.
|
[39] |
Aghvami, M.; Ebrahimi, F.; Zarei, M.H.; Salimi, A.; Pourahmad Jaktaji, R.; Pourahmad, J. Matrine induction of ROS mediated apoptosis in human ALL B-lymphocytes via mitochondrial targeting. Asian Pac. J. Cancer Prev. 2018, 19, 555–560.
|
[40] |
Oh, J.M.; Kim, E.; Chun, S. Ginsenoside compound K induces ros-mediated apoptosis and autophagic inhibition in human neuroblastoma cells in vitro and in vivo. Int. J. Mol. Sci. 2019, 20, 4279.
|
[41] |
Yang, H.L.; Lin, R.W.; Rajendran, P.; Mathew, D.C.; Thigarajan, V.; Lee, C.C.; Hsu, C.J.; Hseu, Y.C. Antrodia salmonea-induced oxidative stress abrogates HER-2 signaling cascade and enhanced apoptosis in ovarian carcinoma cells. J. Cell Physiol. 2019, 234, 3029–3042.
|
[42] |
Lu, Z.Y.; Zhang, G.X.; Zhang, Y.F.; Hua, P.Y.; Fang, M.D.; Wu, M.L.; Liu, T.J. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicol. Appl. Pharmacol. 2018, 352, 46–58.
|
[43] |
Oh, H.; Yoon, G.; Shin, J.C.; Park, S.M.; Cho, S.S.; Cho, J.H.; Lee, M.H.; Liu, K.D.; Cho, Y.S.; Chae, J.I.; Shim, J.H. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int. J. Oncol. 2016, 48, 1749–1757.
|
[44] |
Kwak, A.W.; Choi, J.S.; Lee, M.H.; Oh, H.N.; Cho, S.S.; Yoon, G.; Liu, K.D.; Chae, J.I.; Shim, J.H. Retrochalcone echinatin triggers apoptosis of esophageal squamous cell carcinoma via ROS- and ER stress-mediated signaling pathways. Molecules. 2019, 24, 4055.
|
[45] |
Liu, Z.R.; Sun, L.Z.; Jia, T.H.; Jia, D.F. beta-Aescin shows potent antiproliferative activity in osteosarcoma cells by inducing autophagy, ROS generation and mitochondrial membrane potential loss. J. BUON. 2017, 22, 1582–1586.
|
[46] |
Thiyagarajan, V.; Sivalingam, K.S.; Viswanadha, V.P.; Weng, C.F. 16-hydroxy-cleroda-3, 13-Dien-16, 15-olide induced glioma cell autophagy via ROS generation and activation of p38 MAPK and ERK-1/2. Environ. Toxicol. Pharmacol. 2016, 45, 202–211.
|
[47] |
Wang, H.; Zhang, T.; Sun, W.; Wang, Z.; Zuo, D.; Zhou, Z.; Li, S.; Xu, J.; Yin, F.; Hua, Y.; Cai, Z. Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2016, 7, e2247.
|
[48] |
Zhou, S.F.; Pan, S.T.; Qin, Y.R.; Zhou, Z.W.; He, Z.X.; Zhang, X.J.; Yang, T.X.; Yang, Y.X.; Wang, D.; Qiu, J.X. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des. Dev. Ther. 2015, 1601–1626.
|
[49] |
Ma, K.; Zhang, C.; Huang, M.Y.; Li, W.Y.; Hu, G.Q. Cinobufagin induces autophagy-mediated cell death in human osteosarcoma U2OS cells through the ROS/JNK/p38 signaling pathway. Oncol. Rep. 2016, 36, 90–98.
|
[50] |
Guo, Z.G.; Hu, G.Z.; Wang, H.; Li, Z.H.; Liu, N.J. Ampelopsin inhibits human glioma through inducing apoptosis and autophagy dependent on ROS generation and JNK pathway. Biomed. Pharmacother. 2019, 116, 108524.
|
[51] |
Nicco, C.; Batteux, F. ROS modulator molecules with therapeutic potential in cancers treatments. Molecules. 2017, 23, 84.
|
[52] |
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378.
|
[53] |
Chuang, C.Y.; Liu, H.C.; Wu, L.C.; Chen, C.Y.; Chang, J.T.; Hsu, S.L. Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway. J. Agric. Food Chem. 2010, 58, 2943–2951.
|
[54] |
Russell, L.H.; Mazzio, E.; Badisa, R.B.; Zhu, Z.P.; Agharahimi, M.; Oriaku, E.T.; Goodman, C.B. Autoxidation of Gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer. Res. 2012, 32, 1595–1602.
|
[55] |
Wang, R.X.; Ma, L.J.; Weng, D.; Yao, J.H.; Liu, X.Y.; Jin, F.G. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep. 2016, 35, 3075–3083.
|
[56] |
Yan, C.Q.; Kong, D.C.; Ge, D.; Zhang, Y.M.; Zhang, X.S.; Su, C.H.; Cao, X.J. Mitomycin C induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via a mitochondrial-mediated pathway. Cell Physiol. Biochem. 2015, 35, 1125–1136.
|
[57] |
Poornima, P.; Quency, R.S.; Padma, V.V. Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food Chem. 2013, 136, 659–667.
|
[58] |
Eid, W.; Abdel-Rehim, W. Neferine enhances the antitumor effect of mitomycin-C in hela cells through the activation of p38-MAPK pathway. J. Cell Biochem. 2017, 118, 3472–3479.
|
[59] |
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105.
|
[60] |
Fischer, N.; Seo, E.J.; Efferth, T. Prevention from radiation damage by natural products. Phytomedicine. 2018, 47, 192–200.
|
[61] |
Ichihashi, M.; Ahmed, N.U.; Budiyanto, A.; Wu, A.; Bito, T.; Ueda, M.; Osawa, T. Preventive effect of antioxidant on ultraviolet-induced skin cancer in mice. J. Dermatol. Sci. 2000, 23, S45–S50.
|
[62] |
Kallassy, H.; Fayyad-Kazan, M.; Makki, R.; El-Makhour, Y.; Hamade, E.; Rammal, H.; Leger, D.Y.; Sol, V.; Fayyad-Kazan, H.; Liagre, B.; Badran, B. Chemical composition, antioxidant, anti-inflammatory, and antiproliferative activities of the plant Lebanese crataegus azarolus L. Med. Sci. Monit. Basic Res. 2017, 23, 270–284.
|
[63] |
El Abed, H.; Chakroun, M.; Abdelkafi-Koubaa, Z.; Drira, N.; Marrakchi, N.; Mejdoub, H.; Khemakhem, B. Antioxidant, anti-inflammatory, and antitumoral effects of aqueous ethanolic extract from Phoenix dactylifera L. parthenocarpic dates. Biomed Res. Int. 2018, 2018, 1542602.
|
[64] |
Al-Awaida, W.; Al-Hourani, B.; Akash, M.; Talib, W.; Zein, S.; Falah, R. In vitro anticancer, anti-inflammatory, and antioxidant potentials of Ephedra aphylla. J. Cancer Res. Ther. 2018, 14, 1350–1354.
|
[65] |
Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res. 2018, 41, 1033–1050.
|
[66] |
Zhu, W.Z.; Ma, L.; Yang, B.W.; Zheng, Z.D.; Chai, R.F.; Liu, T.T.; Liu, Z.J.; Song, T.Y.; Li, F.L.; Li, G.R. Flavone inhibits migration through DLC1/RhoA pathway by decreasing ROS generation in breast cancer cells. Vitro Cell Dev. Biol. Animal. 2016, 52, 589–597.
|
[67] |
Qiu, J.X.; Zhang, T.; Zhu, X.Y.; Yang, C.; Wang, Y.X.; Zhou, N.; Ju, B.X.; Zhou, T.H.; Deng, G.Z.; Qiu, C.W. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci. 2019, 21, 131.
|
[1] | 刘良裕, 杨宇珂, 杜肖, 吴桐, 王建农. 白英中三个未被报道的甾体糖苷生物碱及其抗肿瘤活性[J]. 中国药学(英文版), 2022, 31(3): 192-201. |
[2] | 许士琪, 朱礼岩, 郝超, 刘文倩, 陈成龙, 陈泳怡, 刘爱芹. 一种新型含氨基酸基团替加氟前药的合成及其抗肿瘤活性评价[J]. 中国药学(英文版), 2021, 30(9): 743-753. |
[3] | 黄聪, 吴霭琳, 海沙尔江·吾守尔, 徐子悦, 张逸晨, 管晓东, 史录文. 中国浙江省级医保报销对于靶向抗肿瘤药使用的影响: 一项带对照的间断时间序列分析[J]. 中国药学(英文版), 2021, 30(7): 590-597. |
[4] | 宋慧慧, 向卓, 薛淑一, 苗青, 赵丽艳, 李明春. 白头翁皂苷及其单体抗肿瘤作用及机制的研究进展[J]. 中国药学(英文版), 2021, 30(5): 381-392. |
[5] | 李诗慧, 郭可蒙, 尹妮颖, 单明珠, 祝垚, 李颖. 茶皂素诱导活性氧产生介导白色念珠菌线粒体功能障碍[J]. 中国药学(英文版), 2021, 30(11): 895-903. |
[6] | 王景茹, 张爽, 李卓越, 徐美琦, 王光雪, 张烜. 用于光动力疗法的pH敏感性碳酸钙-二氢卟吩e6纳米粒的制备与表征[J]. 中国药学(英文版), 2021, 30(11): 904-911. |
[7] | 刘曼, 张爽, 李卓越, 王光雪, 王景茹, 张烜. 氧化锌纳米粒的制备与表征[J]. 中国药学(英文版), 2020, 29(9): 617-625. |
[8] | 周北斗, 俞紫涵, 童玉贵, 李佳莉, 黄堡城, 魏蓉蓉, 翁智敏, 王欣, 阮志鹏, 林健, 许彩红, 刘建波. 异戊烯基和香叶基取代的呫吨酮的合成与生物活性研究[J]. 中国药学(英文版), 2020, 29(8): 564-576. |
[9] | 靳玉瑞, 李爱秀, 康家雄. 基于2009 H1N1神经氨酸酶天然产物抑制剂的作用模式的研究[J]. 中国药学(英文版), 2020, 29(6): 390-397. |
[10] | 耿彤彤, 王贵阳, 马学洋, 张中义, 刘谈, 葛元洁, 金晶, 孙晓旭, 张英涛, 杨东辉, 马明. Bacillus sp. PKU-TA00001中发现的色胺类天然产物[J]. 中国药学(英文版), 2019, 28(8): 527-536. |
[11] | 程文文, 张冬梅, 郑强, 李中军, 孟祥豹. 新型组蛋白去乙酰化酶抑制剂的设计、合成及活性评价: 含硫锌离子结合基团的发现 [J]. 中国药学(英文版), 2019, 28(6): 408-421. |
[12] | 周北斗, 王欣, 翁智敏, 黄堡城, 马泽通, 于博, 阮丽琴, 胡栋宝. 氧杂蒽酮的合成和抗肿瘤、抑制酪氨酸酶和抑制血小板聚集活性研究[J]. 中国药学(英文版), 2019, 28(4): 247-256. |
[13] | 北京大学药学院. 贾彦兴教授团队在复杂天然产物全合成领域连续取得突破性进展[J]. 中国药学(英文版), 2019, 28(4): 284-286. |
[14] | 郝艳丽, 钟婷, 杜若, 张华, 刘碧林, 张烜. 包载共轭亚油酸-紫杉醇的iRGD修饰的含溶血磷脂的温敏脂质体的细胞摄取和抗肿瘤药效[J]. 中国药学(英文版), 2019, 28(2): 121-133. |
[15] | 卢东渤, 陈宇, 刘姗, 郭超, 李霞, 李中军, 孟祥豹. 茚[1, 2-b]并吲哚衍生物的合成、双重抑制拓扑异构酶I和II及逆转多重耐药等生物活性研究[J]. 中国药学(英文版), 2019, 28(11): 786-801. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||