[1] Bin, P.; Liu, S.J.; Chen, S.; Zeng, Z.Y.; Huang, R.L.; Yin, Y.L.; Liu, G. The effect of aspartate supplementation on the microbial composition and innate immunity on mice. Amino. Acids. 2017, 49, 2045-2051.
[2] Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577-589.
[3] Ren, W.K.; Yin, J.; Duan, J.L.; Liu, G.; Zhu, X.P.; Chen, S.; Li, T.J.; Wang, S.P.; Tang, Y.L.; Hardwidge, P.R. Mouse intestinal innate immune responses altered by enterotoxigenic Escherichiacoli (ETEC) infection. Microbes. Infect. 2014, 16, 954-961.
[4] Lupp, C.; Robertson, M.L.; Wickham, M.E.; Sekirov, I.; Champion, O.L.; Gaynor, E.C.; Finlay, B.B. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host. Microbe. 2007, 2, 204.
[5] David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014, 505, 559-563.
[6] Lichtman, J.S.; Ferreyra, J.A.; Ng, K.M.; Smits, S.A.; Sonnenburg, J.L.; Elias, J.E. Host-microbiota interactions in the pathogenesis of antibiotic-associated diseases. Cell Rep. 2016, 14, 1049-1061.
[7] Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016, 529, 212-215.
[8] Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA. 2011, 108 Suppl 1, 4554-4561.
[9] Walters, W.A.; Xu, Z.; Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014, 588, 4223-4233.
[10] Murray, E.; Manary, M. Possible role of the microbiome in the development of acute malnutrition and implications for food-based strategies to prevent and treat acute malnutrition. Food Nutr. Bull. 2015, 36, S72-S75.
[11] Dalal, S.R.; Chang, E.B. The microbial basis of inflammatory bowel diseases. J. Clin. Invest. 2014, 124, 4190-4196.
[12] Ohtani, N.; Yoshimoto, S.; Hara, E. Obesity and cancer: a gut microbial connection. Cancer Res. 2014, 74, 1885-1889.
[13] De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010, 107, 14691-14696.
[14] Segain, J.P.; Raingeard de la Blétière, D.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottière, H.M.; Galmiche, J.P. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000, 47, 397-403.
[15] Smits, S.A.; Leach, J.; Sonnenburg, E.D.; Gonzalez, C.G.; Lichtman, J.S.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Elias, J.E.; Dominguez-Bello, M.G.; Sonnenburg, J.L. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017, 357, 802-806.
[16] Hasebe, T.; Ueno, N.; Musch, M.W.; Nadimpalli, A.; Kaneko, A.; Kaifuchi, N.; Watanabe, J.; Yamamoto, M.; Kono, T.; Inaba, Y.; Fujiya, M.; Kohgo, Y.; Chang, E.B. Daikenchuto (TU-100) shapes gut microbiota architecture and increases the production of ginsenoside metabolite compound K. Pharmacol. Res. Perspect. 2016, 4, e00215.
[17] Li, J.Y.; Wang, X.B.; Luo, J.G.; Kong, L.Y. Seasonal variation of alkaloid contents and anti-inflammatory activity of rhizomacoptidis based on fingerprints combined with chemometrics methods. J. Chromatogr. Sci. 2015, 53, 1131-1139.
[18] Guo, M.Z.; Li, X.S.; Xu, H.R.; Mei, Z.C.; Shen, W.; Ye, X.F. Rhein inhibits liver fibrosis induced by carbon tetrachloride in rats. Acta Pharmacol. Sin. 2002, 23, 739-744.
[19] Meng, K.W.; Lv, Y.; Yu, L.; Wu, S.L.; Pan, C.G. Effects of emodin and double blood supplies on liver regeneration of reduced size graft liver in rat model. World J. Gastroenterol. 2005, 11, 2941-2944.
[20] Neyrinck, A.M.; Etxeberria, U.; Taminiau, B.; Daube, G.; van Hul, M.; Everard, A.; Cani, P.D.; Bindels, L.B.; Delzenne, N.M. Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Mol. Nutr. Food. Res. 2017, 61, 1-12.
[21] Ye, X.S.; Feng, Y.B.; Tong, Y.; Ng, K.M.; Tsao, S.; Lau, G.K.; Sze, C.; Zhang, Y.B.; Tang, J.; Shen, J.G.; Kobayashi, S. Hepatoprotective effects of Coptidisrhizoma aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats. J. Ethnopharmacol. 2009, 124, 130-136.
[22] Kong, W.J.; Wei, J.; Abidi, P.; Lin, M.H.; Inaba, S.; Li, C.; Wang, Y.L.; Wang, Z.Z.; Si, S.Y.; Pan, H.N.; Wang, S.K.; Wu, J.D.; Wang, Y.; Li, Z.R.; Liu, J.W.; Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 2004, 10, 1344-1351.
[23] Guo, J.; Yang, M.; Zhu, J.; Deng Z. Progress in the pharmacological study of notoginsenoside on cardiovascular diseases. Bulletin of the national annual meeting of biochemical and biotechnological medicine. 2008, 1, 314-317.
[24] Li, Y.; Chen, W.C.; Li, B. Effect of arasaponin Rb1 on heme oxygenase 1 in Hippocampus of neonatal rats with hypoxic-ischemic brain damage. J. Appl. Clin. Pediatr. 2010, 25, 1422-1424.
[25] Yu, L.M.; Deng, Y.K.; Yuan, F.; Wu, X.Z. Review of the study of notoginsenoside on myocardial ischemia. China Pharm. 2011, 14, 1685-1688.
[26] Chan, P.; Thomas, G.N.; Tomlinson, B. Protective effects of trilinolein extracted from Panaxnotoginseng against cardiovascular disease. Acta Pharmacol. Sin. 2002, 23, 1157-1162.
[27] Cicero, A.F.; Vitale, G.; Savino, G.; Arletti, R. Panaxnotoginseng (Burk.) effects on fibrinogen and lipid plasma level in rats fed on a high-fat diet. Phytother. Res. 2003, 17, 174-178.
[28] Xiao, L.; Chen, B.L.; Feng, D.; Yang, T.; Li, T.Y.; Chen, J. TLR4 may be involved in the regulation of colonic mucosal microbiota by vitamin A. Front Microbiol. 2019, 10, 268.
[29] Furuta, T.; Kikuchi, T.; Akira, S.; Watanabe, N.; Yoshikawa, Y. Roles of the small intestine for induction of toll-like receptor 4-mediated innate resistance in naturally acquired murine toxoplasmosis. Int. Immunol. 2006, 18, 1655-1662.
[30] Shi, D.; Lv, L.; Fang, D.Q.; Wu, W.R.; Hu, C.X.; Xu, L.C.; Chen, Y.F.; Guo, J.; Hu, X.J.; Li, A.; Guo, F.F.; Ye, J.Z.; Li, Y.T.; Andayani, D.; Li, L.J. Administration of Lactobacillussalivarius LI01 or Pediococcuspentosaceus LI05 prevents CCl4-induced liver cirrhosis by protecting the intestinal barrier in rats. Sci. Rep. 2017, 7, 6927.
[31] Bui, TP.; Shetty, SA.; Lagkouvardos, I.; Ritari, J.; Chamlagain, B.; Douillard, FP.; Paulin, L.; Piironen, V.; Clavel, T.; Plugge, CM.; de Vos, WM. Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonasbutyriciproducens. Environ Microbiol Rep. 2016, 8, 1024-1037.
[32] Wang, X.; Martin, G.B.; Wen, Q.; Liu, S.L.; Zhang, J.; Yu, Y.; Shi, B.L.; Guo, X.Y.; Zhao, Y.L.; Yan, S.M. Linseed oil and heated linseed grain supplements have different effects on rumen bacterial community structures and fatty acid profiles in cashmere kids1. J. Anim. Sci. 2019, 97, 2099-2113.
[33] Westfall, S.; Lomis, N.; Kahouli, I.; Dia,, Singh, S.P.; Prakash, S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain Axis. Cell Mol. Life Sci. 2017, 74, 3769-3787.
[34] Yao, P.; Cui, M.; Li, Y.; Deng, Y.Y.; Wu, H. Effects of rhubarb on intestinal flora and toll-like receptors of intestinal mucosa in rats with severe acute pancreatitis. Pancreas. 2015, 44, 799-804.
[35] Zeng, Y.Q.; Dai, Z.H.; Lu, F.H.; Lu, Z.Y.; Liu, X.S.; Chen, C.; Qu, P.H.; Li, D.C.; Hua, Z.S.; Qu, Y.N.; Zou, C. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease. Oncotarget. 2016, 7, 17468-17478.
[36] He, K.; Hu, Y.R.; Ma, H.; Zou, Z.Y.; Xiao, Y.B.; Yang, Y.; Feng, M.; Li, X.G.; Ye, X.L. RhizomaCoptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim. Biophys. Acta. 2016, 1862, 1696-1709.
[37] Xie, W.D.; Gu, D.Y.; Li, J.N.; Cui, K.; Zhang, Y.O. Effects and action mechanisms of berberine and Rhizomacoptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS One. 2011, 6, e24520.
[38] Hartmann, P.; Hochrath, K.; Horvath, A.; Chen, P.; Seebauer, C.T.; Llorente, C.; Wang, L.R.; Alnouti, Y.; Fouts, D.E.; Stärkel, P.; Loomba, R.; Coulter, S.; Liddle, C.; Yu, R.T.; Ling, L.; Rossi, S.J.; DePaoli, A.M.; Downes, M.; Evans, R.M.; Brenner, D.A.; Schnabl, B. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 Axis improves alcoholic liver disease in mice. Hepatology. 2018, 67, 2150-2166.
[39] Midtvedt, T. Microbial bile acid transformation. Am. J. Clin. Nutr. 1974, 27, 1341-1347.
[40] Camilleri, M. Bile Acid diarrhea: prevalence, pathogenesis, and therapy. Gut Liver.2015, 9, 332-339.
[41] Sayin,, Wahlström, A.; Felin, J.; Jäntti, S.; Marschall, H.U.; Bamberg, K.; Angelin, B.; Hyötyläinen, T.; Orešič, M.; Bäckhed, F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013, 17, 225-235.
[42] Edgar, R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013, 10, 996-998.
[43] Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; Sahl, J.W.; Stres, B.; Thallinger, G.G.; van Horn, D.J.; Weber, C.F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537-7541.
[44] Smyth, E.M.; Chattopadhyay, S.; Babik, K.; Reid, M.; Chopyk, J.; Malayil, L.; Kulkarni, P.; Hittle, L.E.; Clark, P.I.; Sapkota, A.R.; Mongodin, E.F. The bacterial communities of little cigars and cigarillos are dynamic over time and varying storage conditions. Front. Microbiol. 2019, 10, 2371.
[45] Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. |