[1] Smith, K. Mental health: a world of depression. Nature. 2014, 515, 181.
[2] Gold, P.W.; Goodwin, F.K.; Chrousos, G.P. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (2). N. Engl. J. Med. 1988, 319, 413-420.
[3] Korte, S.M.; Prins, J.; Krajnc, A.M.; Hendriksen, H.; Oosting, R.S.; Westphal, K.G.; Korte-Bouws, G.A.; Olivier, B. The many different faces of major depression: it is time for personalized medicine. Eur. J. Pharmacol. 2015, 753, 88-104.
[4] Thase, M.E.; Schwartz, T.L. Using mechanism of action to choose medications for treatment-resistant depression. J. Clin. Psychiatry. 2015, 76, e1147.
[5] Du, B.J.; Tang, X.S.; Liu, F.; Zhang, C.Y.; Zhao, G.H.; Ren, F.Z.; Leng, X.J. Antidepressant-like effects of the hydroalcoholic extracts of Hemerocallis citrina and its potential active components. BMC Complement. Altern. Med. 2014, 14, 326.
[6] Gu, L.; Liu, Y.J.; Wang, Y.B.; Yi, L.T. Role for monoaminergic systems in the antidepressant-like effect of ethanol extracts from Hemerocallis citrina. J. Ethnopharmacol. 2012, 139, 780-787.
[7] Yi, L.T.; Li, J.; Li, H.C.;Zhou, Y.; Su, B.F.; Yang, K.F.; Jiang, M.; Zhang, Y. T.Ethanol extracts from Hemerocallis citrina attenuate the decreases of brain-derived neurotrophic factor, TrkB levels in rat induced by corticosterone administration. J. Ethnopharmacol. 2012, 144, 328-334.
[8] Liu, X.L.; Luo, L.; Liu, B.B.;Li, J.; Geng, D.; Liu, Q.; Yi, L.T. Ethanol extracts from Hemerocallis citrina attenuate the upregulation of proinflammatory cytokines and indoleamine 2,3-dioxygenase in rats. J. Ethnopharmacol. 2014, 153, 484-490.
[9] Xu, P.; Wang, K.Z.; Lu, C.; Dong, L.M.; Le, Z.J.; Liao, Y.H.; Aibai, S.; Yang, Y.; Liu, X.M. Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism. J. Ethnopharmacol. 2016, 194, 819-826.
[10] Brennan, L. Metabolomics in nutrition research-a powerful window into nutritional metabolism. Essays Biochem. 2016, 60, 451-458.
[11] Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature. 2008, 455, 1054-1056.
[12] Ren, S.; Hinzman, A.A.; Kang, E.L.; Szczesniak, R.D.; Lu, L.J. Computational and statistical analysis of metabolomics data. Metabolomics. 2015, 11, 1492-1513.
[13] Liu, C.C.; Wu, Y.F.; Feng, G.M.; Gao, X.X.; Zhou, Y.Z.; Hou, W.J.; Qin, X.M.; Du, G.H.; Tian, J.S. Plasma-metabolite-biomarkers for the therapeutic response in depressed patients by the traditional Chinese medicine For Mula Xiaoyaosan: a (1)H NMR-based metabolomics approach. J. Affect Disord. 2015, 185, 156-163.
[14] Chang, X.; Jia, H.M.; Zhou, C.; Zhang, H.W.; Yu, M.; Yang, J.S.; Zou, Z.M. Role of Bai-Shao towards the antidepressant effect of Chaihu-Shu-Gan-San using metabonomics integrated with chemical fingerprinting. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1006, 16-29.
[15] Gong, M.J.; Han, B.; Wang, S.M.; Liang, S.W.; Zou, Z.J. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J. Pharm. Biomed. Anal. 2016, 123, 63-73.
[16] Jia, H.M.; Yu, M.; Ma, L.Y.; Zhang, H.W.; Zou, Z.M. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1064, 14-21.
[17] Zheng, P.; Wang, Y.; Chen, L.; Yang, D.Y.; Meng, H.Q.; Zhou, D.Z.; Zhong, J.J.; Lei, Y.; Melgiri, N.D.; Xie, P. Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol. Cell Proteomics. 2013, 12, 207-214.
[18] Liu, X.Y.; Zheng, P.; Zhao, X.J.; Zhang, Y.Q.; Hu, C.X.; Li, J.; Zhao, J.Y.; Zhou, J.J.; Xie, P.; Xu, G.W. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J. Proteome Res. 2015, 14, 2322-2330.
[19] Zhai, J.L.; Tian, H.; Li, M.Q.;Zhang, Z.S.; Liao, Y.H.; Chang, Q.; Pan, R.L.; Liu, X.M. Screen of active anti-depression ingredients from daylily. China Food Addit. 2015, 10, 93-97.
[20] Chen, Y.X.; Wang, Q.; Zhang, Y.L.; Chen, S.G.; Chen, X.P.; Gao, J.H.; Liu, X.M. Depressive behavioral on rats of simulated weightlessness. Chin. J. Exp. Tradit. Med. Form. 2014, 20, 141-145.
[21] Kim, S.E.; Ko, I.G.; Kim, B.K.; Shin, M.S.; Cho, S.; Kim, C.J.; Kim, S.H.; Baek, S.S.; Lee, E.K.; Jee, Y.S. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat Hippocampus. Exp. Gerontol. 2010, 45, 357-365.
[22] Özdemir, V.; Kolker, E. Precision nutrition 4.0: a big data and ethics foresight analysis: convergence of agrigenomics, nutrigenomics, nutriproteomics, and nutrimetabolomics. OMICS. 2016, 20, 69-75.
[23] Yin, P.Y.; Lehmann, R.; Xu, G.W. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal.Chem. 2015, 407, 4879-4892.
[24] Yin, P.Y.; Zhou, L.N.; Zhao, X.J.; Xu, G.W. Sample collection and preparation of biofluids and extracts for liquid chromatography-mass spectrometry. Methods Mol. Biol. 2015, 1277, 51-59.
[25] Uarrota, V.G.; Moresco, R.; Coelho, B.; Nunes, E.d.a.C.; Peruch, L.A.; Neubert, E.d.e.O.; Rocha, M.; Maraschin, M. Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration. Food Chem. 2014, 161, 67-78.
[26] Feng, L.; Wu, H.W.; Song, G.Q.;Lu, C.; Li, Y.H.; Qu, L.N.; Chen, S.G.; Liu, X.M.; Chang, Q. Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method. Behav. Brain. Res. 2016, 302, 60-68.
[27] Takis, P.G.; Oraiopoulou, M.E.; Konidaris, C.; Troganis, A.N. (1)H-NMR based metabolomics study for the detection of the human urine metabolic profile effects of Origanum dictamnus tea ingestion. Food Funct. 2016, 7, 4104-4115.
[28] Styf, J.R.; Hutchinson, K.; Carlsson, S.G.; Hargens, A.R. Depression, mood state, and back pain during microgravity simulated by bed rest. Psychosom. Med. 2001, 63, 862-864.
[29] Porsolt, R.D.; Brossard, G.; Hautbois, C.; Roux, S. Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci. 2001, Chapter 8, Unit 8. 10A.
[30] Zheng, S.N.; Yu, M.Y.; Lu, X.M.; Huo, T.G.; Ge, L.; Yang, J.Y.; Wu, C.F.; Li, F.M. Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clin. Chim. Acta. 2010, 411, 204-209.
[31] Biskup, C.S.; Gaber, T.; Helmbold, K.; Bubenzer-Busch, S.; Zepf, F.D. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids. 2015, 47, 651-683.
[32] Song, J.J.; Hou, X.T.; Hu, X.Y.; Lu, C.Y.; Liu, C.G.; Wang, J.; Liu, W.; Teng, L.R.; Wang, D. Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats. Chem. Biol. Interact. 2015, 242, 211-217.
[33] Du, H.L.; Wang, K.Q.; Su, L.; Zhao, H.X.; Gao, S.Y.; Lin, Q.S.; Ma, X.F.; Zhu, B.K.; Dong, X.; Lou, Z.Y. Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression. J. Pharm. Biomed. Anal. 2016, 128, 469-479.
[34] Zheng, S.N.; Zhang, S.S.; Yu, M.Y.; Tang, J.; Lu, X.M.; Wang, F.; Yang, J.Y.; Li, F.M. An 1H NMR and UPLC-MS-based plasma metabonomic study to investigate the biochemical changes in chronic unpredictable mild stress model of depression. Metabolomics. 2011, 7, 413-423.
[35] Albrecht, J. Roles of neuroactive amino acids in ammonia neurotoxicity. J. Neurosci. Res. 2015, 51, 133-138.
[36] Gibala, M.J.; Young, M.E.; Taegtmeyer, H. Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle. Acta Physiol. Scand. 2000, 168, 657-665.
[37] Zhong, P.; Liu, X.J.; Zhang, Z.; Hu, Y.; Liu, S.J.; Lezama-Ruiz, M.; Joksimovic, M.; Liu, Q.S. Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression-related behaviors. J. Neurosci. 2014, 34, 6352-6366.
[38] O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome Axis. Behav. Brain Res. 2015, 277, 32-48.
[39] Ogłodek, E.; Szota, A.; Just, M.; Moś, D.; Araszkiewicz, A. The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacol. Rep. 2014, 66, 776-781.
[40] Anderson, I.M.; Ware, C.J.; da Roza Davis, J.M.; Cowen, P.J. Decreased 5-HT-mediated prolactin release in major depression. Br. J. Psychiatry. 1992, 160, 372-378.
[41] Jacobsen, J.P.; Medvedev, I.O.; Caron, M.G. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2012, 367, 2444-2459. |