http://jcps.bjmu.edu.cn

中国药学(英文版) ›› 2018, Vol. 27 ›› Issue (2): 75-81.DOI: 10.5246/jcps.2018.02.008

• 【研究论文】 •    下一篇

一种通过衍生化改进的盐霉素钠含量测定方法及其在脂质体制剂中的应用

张婧莹, 罗倩, 许佳瑞, 白婧, 刘磊, 沐黎敏, 阎妍, 吕万良*   

  1. 北京大学医学部 药学院 分子药剂学与新释药系统北京市重点实验室; 天然药物及仿生药物国家重点实验室, 北京 100191
  • 收稿日期:2017-11-22 修回日期:2017-12-25 出版日期:2018-03-03 发布日期:2018-01-03
  • 通讯作者: Tel.: +86-010-82802683, E-mail: luwl@bjmu.edu.cn
  • 基金资助:
    National Science Foundation of China (Grant No. 81673367).

A derivatization method to improve the assay of salinomycin sodium and its application in the liposomal formulation

Jingying Zhang, Qian Luo, Jiarui Xu, Jing Bai, Lei Liu, Limin Mu, Yan Yan, Wanliang Lu*   

  1. Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
  • Received:2017-11-22 Revised:2017-12-25 Online:2018-03-03 Published:2018-01-03
  • Contact: Tel.: +86-010-82802683, E-mail: luwl@bjmu.edu.cn
  • Supported by:
    National Science Foundation of China (Grant No. 81673367).

摘要:

盐霉素钠是一种具有治疗肿瘤干细胞潜能的抗生素化疗药物, 在药典中收载的盐霉素钠含量测定方法是微生物法, 不适于日常科研中快速检测, 文献报道的方法也多因辅料干扰, 难以定量。因此, 其含量测定方法一直困扰着对盐霉素钠生物学效应和机制的深入研究。本研究旨在建立一种紫外-可见分光光度法, 用于测定脂质体中包载的盐霉素钠含量。本文采用两种检测方法: (1) 紫外吸收法, 将盐霉素钠用乙醇溶解后, 287 nm处检测吸光度; (2) 香草醛衍生化法, 盐霉素钠用95%乙醇溶解, 与香草醛试液在72 °C发生显色反应后, 526 nm处进行吸光度检测。通过两种方法对比, 最佳含量测定方法。结果发现, 紫外吸收法在287 nm处测定标准曲线线性良好, 但是检测限浓度值较高, 无法满足脂质体内包载盐霉素钠的测定, 而且脂材在287 nm处具有较大干扰; 而香草醛衍生化法可以准确的在较低浓度下测定盐霉素钠的含量, 吸光度随着时间变化较小, 并且在526 nm波长下脂材对盐霉素钠吸光度影响较小。本文通过香草醛衍生化法建立的盐霉素钠含量测定方法, 准确地测定脂质体中包载盐霉素钠的含量, 精密度和回收率均良好, 为盐霉素钠脂质体制剂的生物学机制研究奠定基础。

关键词: 盐霉素钠, 香草醛衍生化, 紫外-可见吸收法, 含量测定, 脂质体

Abstract:

Salinomycin sodium (SAL-Na) is a type of antibiotic chemotherapeutic drugs with the potential to treat cancer stem cells. The assay method of SAL-Na included in the pharmacopoeia is a microbiological method, which is not suitable for the rapid detection in daily scientific research. Besides, the assay methods of SAL-Na reported by literature are not suitable for quantification due to the interference of various excipients. Consequently, the deep study on biological mechanism of SAL-Na is hindered by its assay method. In the present study, we aimed to establish an ultraviolet visible (UV-vis) spectrophotometric method to determine the content of SAL-Na in the liposomes. The first approach was a UV spectrophotometry, in which SAL-Na was dissolved in ethanol and then detected at 287 nm. Although the standard curve measured at 287 nm by UV method had good linearity, the quantification limitation was too high to meet the requirement in determining SAL-Na in the liposomes. In addition, the membrane materials in the liposomes severely affected the measurement. The second one was an improved UV-vis spectrophotometry by vanillin derivatization. In this method, SAL-Na was dissolved in 95% ethanol, mixed with vanillin test solution and heated at 72 °C for 40 min for derivatization. After cooling down to room temperature, the solution was detected using UV-vis spectrophotometer at 526 nm. This method could be used to accurately determine the content of SAL-Na at lower concentration, and the absorbance value was stable for 5 d at least. Moreover, the membrane materials of the liposomes did not affect the absorbance of SAL-Na at 526 nm. The precision and recovery studies demonstrated that the vanillin derivatization approach was stable and precise in assaying SAL-Na. In conclusion, the UV-vis spectrophotometry by vanillin derivatization could be used for measuring SAL-Na in the liposomes, thereby laying a foundation for deep study of the biological mechanism of SAL-Na in the liposomes.

Key words: Salinomycin sodium, Vanillin derivatization, UV-vis, Assay, Liposomes

中图分类号: 

Supporting: