[1] |
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2016, 12, 459–509.
|
[2] |
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet. 2006, 368, 387–403.
|
[3] |
Mullane, K.; Williams, M. Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond? Biochem. Pharmacol. 2013, 85, 289–305.
|
[4] |
Huang, L.J.; Zhao, C.Y.; Feng, X.H.; Lan, J.Q.; Tang, Q.Z.; Wang. Q.L.; Peng, Y. Exploration of noncl-inical pharmacodynamics evaluation system of Alzheimer’s disease. Acta. Pharm. Sin. 2020, 55, 789–805.
|
[5] |
Dasgupta, Y.; Golovine, K.; Nieborowska-Skorska, M.; Luo, L.; Matlawska-Wasowska, K.; Mullighan, C.G.; Skorski, T. Drugging DNA repair to target T-ALL cells. Leuk. Lymphoma. 2018, 59, 1746–1749.
|
[6] |
Birks, J.S.; Harvey, R. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 2003, CD001190.
|
[7] |
Zaki, A.G.; El-Shatoury, E.H.; Ahmed, A.S.; Al-Hagar, O.E.A.. Production and enhancement of the acetylcholinesterase inhibitor, huperzine A, from an endophytic alternaria brassicae AGF041. Appl. Microbiol. Biotechnol. 2019, 103, 5867–5878.
|
[8] |
Akinniyi, G.; Lee, J.; Kim, H.; Lee, J.G.; Yang, I. A medicinal halophyte ipomoea pes-caprae (linn.) R. Br.: a review of its botany, traditional uses, phytochemistry, and bioactivity. Mar. Drugs. 2022, 20, 329.
|
[9] |
Devall, M.S. The biological flora of coastal dunes and wetlands. 2. Ipomoea pes-caprae (L.) roth. J. Coastal. Res. 1992, 8, 442–456.
|
[10] |
Pereda-Miranda, R.; Escalante-Sánchez, E.; Escobedo-Martínez, C. Characterization of lipophilic pentasaccharides from beach morning glory (ipomoea pes-caprae). J. Nat. Prod. 2005, 68, 226–230.
|
[11] |
Zhang, H.; Zheng, J.X.; Su, H.X.; Xia, K.F.; Jian, S.G.; Zhang, M. Molecular cloning and functional characterization of the dehydrin (IpDHN) gene from Ipomoea pes-caprae. Front. Plant Sci. 2018, 9, 1454.
|
[12] |
Zhang, M.; Zhang, H.; Zheng, J.X.; Mo, H.; Xia, K.F.; Jian, S.G. Functional identification of salt-stress-related genes using the FOX hunting system from Ipomoea pes-caprae. Int. J. Mol. Sci. 2018, 19, 3446.
|
[13] |
Huang, C.T.; Yang, X.; Hou, X.T.; Du, Z.C.; Yu, C.L.; Mo, Q.; Zhao, F.H.; Wei, Y.T.; Hao, E.W.; Deng, J.G. Study on the effect of the water extract of herba caulis houteng on foot edema in rats with rheumatic cold arthralgia syndrome and rheumatic heat rrthralgiasyndrome. Pharmacol. Clin. Chin. Mater. Med. 2021, 37, 109–113.
|
[14] |
Hou, X.T.; Wei, Y.T.; Xia, Z.S.; Wei, W.; Hao, E.W.; Du, Z.C.; Zhou, Y.M.; Deng, J.G. Study on qu-ality markers of caulis cauliscaulis in treating acute gouty arthritis based on serum pharmacochemistry. Chin. Herb. Med. 2021, 52, 2638–2652.
|
[15] |
Srivastava, R.; Sachdev, K.; Madhusudanan, K.P.; Kulshreshtha, D.K. Structure of pescaproside E, a fatty acid glycoside from Ipomoea pescaprae. Carbohydr. Res. 1991, 212, 169–176.
|
[16] |
Escobedo-Martínez, C.; Cruz-Morales, S.; Fragoso-Serrano, M.; Rahman, M.M.; Gibbons, S.; Pereda-Miranda, R. Characterization of a xylose containing oligosaccharide, an inhibitor of multidrug resistance in Staphylococcus aureus, from Ipomoea pes-caprae. Phytochemistry. 2010, 71, 1796–1801.
|
[17] |
Ge, Y.C.; Luo, J.G.; Wu ,Y.H.; Li, Y.X.; Huo, W.Z.; Yu, B.W. Studies on the chemical constituents of caulis clematis. J. Med. Chem. 2016, 39, 2251–2255.
|
[18] |
Wang, Q.J.; Wang, Y.S.; He, L.; Lou, Z.P.; Zhang, L. Studies on the chemical constituents of Ipomoea- pes caprae (L) Sweet II. Chin. J. Mar. Drugs. 2010, 29, 41–44.
|
[19] |
Krogh, R.; Kroth, R.; Berti, C.; Madeira, A.O.; Souza, M.M.; Cechinel-Filho, V.; Delle-Monache, F.; Yunes, R.A.. Isolation and identification of compounds with antinociceptive action from Ipomoea pes-caprae (L.) R. Br. Pharmazie. 1999, 54, 464–466.
|
[20] |
Yu, B.W.; Luo, J.G.; Wang, J.S.; Zhang, D.M.; Yu, S.S.; Kong, L.Y. Pentasaccharide resin glycosides from Ipomoea pes-caprae. J. Nat. Prod. 2011, 74, 620–628.
|
[21] |
Liu, W.; Liu, Y.; Hou, X.T.; Zhong, Y.N. Simultaneous determination of eight constituents in different parts of Ipomoea pes-caprae by HPLC. Chin. Tradit. Pat. Med. 2021, 43, 128–131.
|
[22] |
Escobedo-Martínez, C.; Pereda-Miranda, R. Resin glycosides from Ipomoea pes-caprae. J. Nat. Prod. 2007, 70, 974–978.
|
[23] |
Feng, X.H.; Deng, J.G.; Qi, J.F.; Hao, E.W.; Wei, W.; Xie, J.L.; Hou, X.T. Research progress on chemical constituents and pharmacological activities of the marine traditional Chinese medicine caulis corydalis. Chin. Herb. Med. 2018, 49, 955–964.
|
[24] |
Yang, Y.; Chen, X.F.; Zhang, Q.; Yuan, X.F.; He, X.R. Synthesis and biological activity of chalcone derivatives based on the target of acetylcholinesterase and butylcholinesterase. Chem. Bull. 2022, 85, 460–469.
|
[25] |
Sang, Z.P.; Song, Q.; Cao, Z.C.; Deng, Y.; Zhang, L. Design, synthesis, and evaluation of chalcone-Vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2022, 37, 69–85.
|
[26] |
Liu, C.; Sang, Z.P.; Pan, H.; Wu, Q.; Qiu, Y.; Shi, J.S. A novel multifunctional 5,6-dimethoxy-indanone-chalcone-carbamate hybrids alleviates cognitive decline in alzheimer’s disease by dual inhibition of acetylcholinesterase and inflammation. Front. Aging Neurosci. 2022, 14, 922650.
|
[27] |
Thapa, P.; Upadhyay, S.P.; Suo, W.Z. Chalcone and its analogs: therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg. Chem. 2021, 108, 104681.
|
[28] |
Zhang, Y.F.; Huang, G.J.; Chen, Y.F.; Yu, X. Preparation of sulfonylhydrazone acetylcholinesterase inhi-bitors based on coumarin mother nucleus. Shandong. Chem. 2020, 49, 10–11.
|
[29] |
Yu, X.; Chen, Y.F.; Zhao, Y.F.; Huang, G.J.Preparation of 7-diethylaminocoumarin hydrazone and acylhydrazone derivatives and their inhibitory activity against acetylcholinesterase. Chem. Bull. 2020, 83, 92–95.
|
[30] |
Yusufzai, S.K.; Khan, M.S.; Sulaiman, O.; Osman, H.; Lamjin, D.N.. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem. Cent. J. 2018, 12, 128.
|
[31] |
Mzezewa, S.C.; Omoruyi, S.I.; Zondagh, L.S.; Malan, S.F.; Ekpo, O.E.; Joubert, J. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer’s disease agents. J. Enzyme Inhib. Med. Chem. 2021, 36, 1606–1620.
|
[32] |
Qasim, M.; Abideen, Z.; Adnan, M.Y.; Gulzar, S.; Gul, B.; Rasheed, M.; Khan, M.A. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South Afr. J. Bot. 2017, 110, 240–250.
|
[33] |
Hostalkova, A.; Marikova, J.; Opletal, L.; Korabecny, J.; Hulcova, D.; Kunes, J.; Novakova, L.; Perez, D.I.; Jun, D.; Kucera, T.; Andrisano, V.; Siatka, T.; Cahlikova, L. Isoquinoline alkaloids from Berberis vulgaris as potential lead compounds for the treatment of alzheimer’s disease. J. Nat. Prod. 2019, 82, 239–248.
|