[1] Wang, L.; Meng, D.H.; Hao, Y.W.; Hu, Y.J.; Niu, M.Y. A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J. Mater. Chem. B. 2016, 4, 35.
[2] An, J.; Yang, X.Q.; Cheng, K.; Song, X.L.; Zhang, L.; Li, C.; Zhang, X.S.; Xuan, Y.; Song, Y.Y.; Fang, B.Y.; Hou, X.L.; Zhao, Y.D.; Liu, B. In vivo computed tomography/photoacoustic imaging and NIR-triggered chemo-photothermal combined therapy based on a gold nanostar-, mesoporous silica-, and thermosensitive liposome-composited nanoprobe. ACS Appl. Mater. Interfaces. 2017, 9, 41748-41759.
[3] Harmsen, S.; Wall, M.A.; Huang, R.M.; Kircher, M.F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 2017, 12, 1400-1414.
[4] Sun, Y.G.; Mayers, B.T.; Xia, Y.N. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481-485.
[5] Cai, W.B.; Gao, T.; Hong, H.; Sun, J.T. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008, 1, 17-32.
[6] Bardhan, R.; Lal, S.; Joshi, A.; Halas, N.J. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res. 2011, 44, 936-946.
[7] Stone, J.; Jackson, S.; Wright, D. Biological applications of gold nanorods. WIREs Nanomed. Nanobiotechnol. 2011, 3, 100-109.
[8] Xia, Y.N.; Li, W.Y.; Cobley, C.M.; Chen, J.Y.; Xia, X.H.; Zhang, Q.; Yang, M.X.; Cho, E.C.; Brown, P.K. Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914-924.
[9] Rodríguez-Oliveros, R.; Sánchez-Gil, J.A. Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt. Express. 2012, 20, 621-626.
[10] Yuan, H.; Khoury, C.G.; Wilson, C.M.; Grant, G.A.; Bennett, A.J.; Vo-Dinh, T. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomed-Nanotechnol. Biol. Med. 2012, 8, 1355-1363.
[11] Tsai, M.F.; Chang, S.H.; Cheng, F.Y.; Shanmugam, V.; Cheng, Y.S.; Su, C.H.; Yeh, C.S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano. 2013, 7, 5330-5342.
[12] Sheng, W.Z.; He, S.; Seare, W.J.; Almutairi, A. Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy. J. Biomed. Opt. 2017, 22, 80901.
[13] Menon, J.U.; Jadeja, P.; Tambe, P.; Vu, K.; Yuan, B.H.; Nguyen, K.T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics. 2013, 3, 152-166.
[14] Doering, W.E.; Nie, S.M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 2003, 75, 6171-6176.
[15] Xie, X.P.; Liao, J.F.; Shao, X.R.; Li, Q.S.; Lin, Y.F. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep. 2017, 7, 3827.
[16] Ju, E.G.; Dong, K.; Liu, Z.; Pu, F.; Ren, J.S.; Qu, X.G. Tumor microenvironment activated photothermal strategy for precisely controlled ablation of solid tumors upon NIR irradiation. Adv. Funct. Mater. 2015, 25, 1574-1580.
[17] Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R.A.; Kornowski, A.; Weller, H.; Liz-Marzán, L.M. Tuning size and sensing properties in colloidal gold nanostars. Langmuir. 2010, 26, 14943-14950.
[18] Dondapati, S.K.; Sau, T.K.; Hrelescu, C.; Klar, T.A.; Stefani, F.D.; Feldmann, J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano. 2010, 4, 6318-6322.
[19] Yuan, H.; Khoury, C.G.; Hwang, H.; Wilson, C.M.; Grant, G.A.; Vo-Dinh, T. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology. 2012, 23, 075102. |