中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (6): 460-472.DOI: 10.5246/jcps.2023.06.039
胡小勤1,3, 丁雪菲1, 邓家刚1,2, 郝二伟1,2, 杜正彩1,2, 周蓓1,2, 曾学文1,3,*()
收稿日期:
2022-11-12
修回日期:
2022-12-20
接受日期:
2023-01-07
出版日期:
2023-07-01
发布日期:
2023-07-01
通讯作者:
曾学文
作者简介:
Xiaoqin Hu1,3, Xuefei Ding1, Jiagang Deng1,2, Erwei Hao1,2, Zhengcai Du1,2, Bei Zhou1,2, Xuewen Zeng1,3,*()
Received:
2022-11-12
Revised:
2022-12-20
Accepted:
2023-01-07
Online:
2023-07-01
Published:
2023-07-01
Contact:
Xuewen Zeng
摘要:
高血压是一种低度炎症状态的疾病, 通常伴有心脏炎症。芒果苷(MGF)是一种天然糖基蒽酮, 具有很强的抗炎活性。然而, MGF对高血压患者心脏炎症损伤的作用尚不清楚。本文研究MGF对自发性高血压大鼠(SHRs)心脏炎症损伤的保护作用及其机制。采用10周龄雄性SHRs和10周龄正常雄性Wistar-Kyoto (WKY)大鼠, 对SHRs使用10、20、40 mg/kg剂量的MGF, 连续8周。测量其收缩压(SBP)水平, 采集心脏组织进行形态学、免疫组化、ELISA、western blot和实时反转录PCR分析。结果表明模型组大鼠收缩压水平均较对照组显著升高, SHRs自发升高收缩压水平, 各剂量MGF对收缩压水平无显著影响。模型组大鼠心脏组织形态学结果显示有明显的炎症性损伤, MGF对这种损伤有显著的抑制作用。同时, MGF显著抑制了SHRs IL-6和TNF-α含量的升高。此外, MGF还显著抑制了SHRs MCP-1、CCR2蛋白以及其mRNA表达的增加。研究表明MGF并不会降低SHRs大鼠的SBP水平, 但MGF对SHRs大鼠的心脏炎症损伤具有保护作用, 这可能是因为MGF部分抑制了MCP-1/CCR2信号通路表达的原因。
Supporting:
胡小勤, 丁雪菲, 邓家刚, 郝二伟, 杜正彩, 周蓓, 曾学文. 芒果苷通过抑制MCP-1/CCR2信号通路减轻自发性高血压大鼠心脏炎症损伤[J]. 中国药学(英文版), 2023, 32(6): 460-472.
Xiaoqin Hu, Xuefei Ding, Jiagang Deng, Erwei Hao, Zhengcai Du, Bei Zhou, Xuewen Zeng. Mangiferin alleviates cardiac inflammatory injury in spontaneously hypertensive rats by inhibiting the MCP-1/CCR2 signaling pathway[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 460-472.
Figure 2. Effect of MGF on morphological changes in cardiac tissues of SHRs. (A) Histopathological changes in cardiac tissues of SHRs (H&E, 200×); (B) Histopathological changes in cardiac tissues of SHRs (Masson, 200×). Panels 1–6 represent morphological changes in the control group, model group, benazepril group, 10 mg/kg MGF group, 20 mg/kg MGF group, and 40 mg/kg MGF group, respectively.
Figure 3. Effect of MGF on morphological changes in cardiac tissues of SHRs. Ultrastructural changes in cardiac tissues of SHRs (TEM, 8000×). Panels 1–4 represent morphological changes in the control group, model group, benazepril group, and 40 mg/kg MGF group, respectively.
Figure 4. Effect of MGF on IL-6 and TNF-α expressions in cardiac tissues of SHRs. (A) Immunohistochemical staining for the expressions of IL-6 and TNF-α; (B) Quantification of immunohistochemical staining analysis of IL-6 and TNF-α. Panels 1–6 in (A) represent protein expression in the control group, model group, benazepril group, 10 mg/kg MGF group, 20 mg/kg MGF group, and 40 mg/kg MGF group, respectively. All data were expressed as mean ± SD, n = 8. **P < 0.01 vs. the control group; ##P < 0.01 vs. the model group.
Figure 5. Effect of MGF on MCP-1 and CCR2 expressions in cardiac tissues of SHRs. (A) Representative MCP-1, CCR2 bands, and corresponding GAPDH bands; (B) Quantification of the Western blotting analysis of MCP-1 and CCR2 expressions. Panels 1–6 in (A) represent protein expression in the control group, model group, benazepril group, 10 mg/kg MGF group, 20 mg/kg MGF group, and 40 mg/kg MGF group, respectively. All data were expressed as mean ± SD, n = 8. *P < 0.05, **P < 0.01 vs. the control group; #P < 0.05, ##P < 0.01 vs. the model group.
Figure 6. Effect of MGF on MCP-1 and CCR2 mRNA expression. (A) The Amplification Plot of MCP-1, CCR2, and GAPDH mRNA; (B) The relative mRNA value of MCP-1 and CCR2, which was determined and normalized to GAPDH, and data were analyzed by the method of 2–ΔΔCt. All data were expressed as mean ± SD, n = 8. **P < 0.01 vs. the control group; #P < 0.05, ##P < 0.01 vs. the model group.
[1] |
Salomon, J.A.; Wang, H.D.; Freeman, M.K.; Vos, T.; Flaxman, A.D.; Lopez, A.D.; Murray, C.J.L. Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet. 2012, 380, 2144–2162.
|
[2] |
Messerli, F.H.; Grossman, E. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension. 2001, 38, E11.
|
[3] |
Rabinovitch, M.; Guignabert, C.; Humbert, M.; Nicolls, M.R. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ. Res. 2014, 115, 165–175.
|
[4] |
De Miguel, C.; Rudemiller, N.P.; Abais, J.M.; Mattson, D.L. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr. Hypertens. Rep. 2015, 17, 507.
|
[5] |
Pauletto, P.; Rattazzi, M. Inflammation and hypertension: the search for a link. Nephrol. Dial. Transplant. 2006, 21, 850–853.
|
[6] |
Bautista, L.E.; Vera, L.M.; Arenas, I.A.; Gamarra, G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J. Hum. Hypertens. 2005, 19, 149–154.
|
[7] |
Humbert, M.; Monti, G.; Brenot, F.; Sitbon, O.; Portier, A.; Grangeot-Keros, L.; Duroux, P.; Galanaud, P.; Simonneau, G.; Emilie, D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1995, 151, 1628–1631.
|
[8] |
Lakoski, S.G.; Herrington, D.M.; Siscovick, D.M.; Hulley, S.B. C-reactive protein concentration and incident hypertension in young adults: the CARDIA study. Arch. Intern. Med. 2006, 166, 345–349.
|
[9] |
Capers, Q. IV, Alexander, R.W.; Lou, P.P.; De Leon, H.; Wilcox, J.N.; Ishizaka, N.; Howard, A.B.; Taylor, W.R. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension. 1997, 30, 1397–1402.
|
[10] |
Glowinska, B.; Urban, M.; Peczynska, J.; Florys, B. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes. Metabolism. 2005, 54, 1020–1026.
|
[11] |
Celik, T.; Iyisoy, A.; Kursaklioglu, H.; Kardesoglu, E.; Kilic, S.; Turhan, H.; Yilmaz, M.I.; Ozcan, O.; Yaman, H.; Isik, E.; Fici, F. Comparative effects of nebivolol and metoprolol on oxidative stress, insulin resistance, plasma adiponectin and soluble P-selectin levels in hypertensive patients. J. Hypertens. 2006, 24, 591–596.
|
[12] |
Chrysohoou, C.; Pitsavos, C.; Panagiotakos, D.B.; Skoumas, J.; Stefanadis, C. Association between prehypertension status and inflammatory markers related to atherosclerotic disease: the ATTICA Study. Am. J. Hypertens. 2004, 17, 568–573.
|
[13] |
McMaster, W.G.; Kirabo, A.; Madhur, M.S.; Harrison, D.G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 2015, 116, 1022–1033.
|
[14] |
Trippodo, N.C.; Frohlich, E.D. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ. Res. 1981, 48, 309–319.
|
[15] |
Widy-Tyszkiewicz, E.; Scheel-Krüger, J.; Christensen, A.V. Spatial navigation learning in spontaneously hypertensive, renal hypertensive and normotensive Wistar rats. Behav. Brain Res. 1993, 54, 179–185.
|
[16] |
Sun, L.; Gao, Y.H.; Tian, D.K.; Zheng, J.P.; Zhu, C.Y.; Ke, Y.; Bian, K. Inflammation of different tissues in spontaneously hypertensive rats. Acta Physiol. Sin. 2006, 58, 318–323.
|
[17] |
Rodríguez-Iturbe, B.; Quiroz, Y.; Ferrebuz, A.; Parra, G.; Vaziri, N.D. Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am. J. Nephrol. 2004, 24, 587–594.
|
[18] |
Barrios, V.; Escobar, C. Antihypertensive and organ-protective effects of benazepril. Expert Rev. Cardiovasc. Ther. 2010, 8, 1653–1671.
|
[19] |
Lin, L.P.; Wang, J.; Kuang, X. Effect of benazepril on serum endothelin, nitric oxide and C-reactive protein in patients with type 2 diabetes mellitus. J. Clin. Res. 2008, 11, 2018–2020.
|
[20] |
He, H.B.; Shi, M.Q.; Yang, X.Z.; Zeng, X.W.; Wu, L.M.; Li, L.D. Comparison of cardioprotective effects using salvianolic acid B and benazepril for the treatment of chronic myocardial infarction in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2008, 378, 311–322.
|
[21] |
Li, Y.; Gong, Y.Q.; Zhang, W. New study progress of mangiferin At home. Guid. J. Tradit. Chin. Med. Pharm. 2015, 21, 92–96.
|
[22] |
Sarkar, M. Evaluation of the Anti-Inflammatory Activity of Methanolic Leaf Extract of Mangifera indica L. (Anacardiaceae) in Rats. Int. J. Drug Dev. Res. 2015, 7, 21–25.
|
[23] |
Pan, C.W.; Pan, Z.Z.; Hu, J.J.; Chen, W.L.; Zhou, G.Y.; Lin, W.; Jin, L.X.; Xu, C.L. Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Eur. J. Pharmacol. 2016, 770, 85–91.
|
[24] |
Li, M.L.; Ma, H.L.; Yang, L.X.; Li, P. Mangiferin inhibition of proliferation and induction of apoptosis in human prostate cancer cells is correlated with downregulation of B-cell lymphoma-2 and upregulation of microRNA-182. Oncol. Lett. 2016, 11, 817–822.
|
[25] |
Sekar, M. Molecules of interest - mangiferin - A review. Annu. Res. Rev. Biol. 2015, 5, 307–320
|
[26] |
Benard, O.; Chi, Y.L. Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities. Mini Rev. Med. Chem. 2015, 15, 582–594.
|
[27] |
Prabhu, S.; Jainu, M.; Sabitha, K.E.; Devi, C.S. Cardioprotective effect of mangiferin on isoproterenol induced myocardial infarction in rats. Indian J. Exp. Biol. 2006, 44, 209–215.
|
[28] |
Hu, X.Q.; Yang, X.M.; Zeng, X.W.; Hao, E.W.; Qin, L.L.; Deng, J.G. The effect of mangiferin on spontaneously hypertensive rats’ heart, brain and kidney tissue morphology. Sci. Technol. Eng. 2012, 12, 6278–6281.
|
[29] |
Yang, Z.; Weian, C.; Susu, H.; Hanmin, W. Protective effects of mangiferin on cerebral ischemia–reperfusion injury and its mechanisms. Eur. J. Pharmacol. 2016, 771, 145–151.
|
[30] |
Zou, T.B.; Xia, E.Q.; He, T.P.; Huang, M.Y.; Jia, Q.; Li, H.W. Ultrasound-assisted extraction of Mangiferin from Mango (Mangifera indica L.) leaves using response surface methodology. Molecules. 2014, 19, 1411–1421.
|
[31] |
Baldo, M.P.; Forechi, L.; Morra, E.A.S.; Zaniqueli, D.; Machado, R.C.; Lunz, W.; Rodrigues, S.L.; Mill, J.G. Long-term use of low-dose spironolactone in spontaneously hypertensive rats: effects on left ventricular hypertrophy and stiffness. Pharmacol. Rep. 2011, 63, 975–982.
|
[32] |
Han, J.; Xuan, J.L.; Yang, J.R.; Li, W.; Zhao, M.Q. Effect and mechanisms of sesamin on attenuating renal fibrosis in spontaneously hypertensive rats. Chin. J. Clin. Pharmacol. Ther. 2016, 21, 16–22.
|
[33] |
Dickey, J.S.; Gonzalez, Y.; Aryal, B.; Mog, S.; Nakamura, A.J.; Redon, C.E.; Baxa, U.; Rosen, E.; Cheng, G.; Zielonka, J.; Parekh, P.; Mason, K.P.; Joseph, J.; Kalyanaraman, B.; Bonner, W.; Herman, E.; Shacter, E.; Rao, V.A. Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS One. 2013, 8, e70575.
|
[34] |
Lin, W.Y.; Lin, Y.P.; Levin, R.M.; Chen, M.L. The relevance of immune responses to partial bladder outlet obstruction and reversal. Neurourol. Urodyn. 2017, 36, 1306–1312.
|
[35] |
McAtee, C.P.; Seid, C.A.; Hammond, M.; Hudspeth, E.; Keegan, B.P.; Liu, Z.Y.; Wei, J.F.; Zhan, B.; Arjona-Sabido, R.; Cruz-Chan, V.; Dumonteil, E.; Hotez, P.J.; Bottazzi, M.E. Expression, purification, immunogenicity and protective efficacy of a recombinant nucleoside hydrolase from Leishmania donovani, a vaccine candidate for preventing cutaneous leishmaniasis. Protein Expr. Purif. 2017, 130, 129–136.
|
[36] |
Fang, H.; Shuang, D.; Yi, Z.; Sheng, H.; Liu, Y. Up-regulated microRNA-155 expression is associated with poor prognosis in cervical cancer patients. Biomed. Pharmacother. 2016, 83, 64–69.
|
[37] |
Kurdi, M.; Randon, J.; Cerutti, C.; Bricca, G. Increased expression of IL-6 and LIF in the hypertrophied left ventricle of TGR(mRen2)27 and SHR rats. Mol. Cell Biochem. 2005, 269, 95–101.
|
[38] |
Sanada, L.S.; da Rocha Kalil, A.L.; Tavares, M.R.; Neubern, M.C.M.; Salgado, H.C.; Fazan, V.P.S. Sural nerve involvement in experimental hypertension: morphology and morphometry in male and female normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). BMC Neuroscienc. 2012, 13, 24.
|
[39] |
Akira, S.; Hirano, T.; Taga, T.; Kishimoto, T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 1990, 4, 2860–2867.
|
[40] |
Ouyang, W.J.; Rutz, S.; Crellin, N.K.; Valdez, P.A.; Hymowitz, S.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011, 29, 71–109.
|
[41] |
Sriramula, S.; Haque, M.; Majid, D.S.A.; Francis, J. Involvement of tumor necrosis factor-α in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension. 2008, 51, 1345–1351.
|
[42] |
Timasheva, Y.R.; Nasibullin, T.R.; Zakirova, A.N.; Mustafina, O.E. Association of interleukin-6, interleukin-12, and interleukin-10 gene polymorphisms with essential hypertension in tatars from Russia. Biochem. Genet. 2008, 46, 64–74.
|
[43] |
Teilmann, A.C.; Rozell, B.; Kalliokoski, O.; Hau, J.; Abelson, K.S.P. Carotid catheterization and automated blood sampling induce systemic IL-6 secretion and local tissue damage and inflammation in the heart, kidneys, liver and salivary glands in NMRI mice. PLoS One. 2016, 11, e0166353.
|
[44] |
Osnes, L.T.N.; Westvik, Å.B.; Øvstebø, R.; Joø, G.B.; Okkenhaug, C.; Kierulf, P. Lipopolysaccharide activation of human monocytes mediated by CD14, results in a coordinated synthesis of tissue factor, TNF-α and IL-6. J. Endotoxin Res. 1995, 2, 27–35.
|
[45] |
Liu, X.T.; Fang, S.C.; Liu, H.J.; Wang, X.G.; Dai, X.N.; Yin, Q.; Yun, T.W.; Wang, W.; Zhang, Y.M.; Liao, H.; Zhang, W.; Yao, H.H.; Chao, J. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis. Toxicol. Appl. Pharmacol. 2015, 288, 152–160.
|
[46] |
Zhou, X.L.; Lei, H.; Sun, Z.J. Participation of immune cells in klotho deficiency-induced salt-sensitive hypertension. FASEB J. 2015, 29, 667.3.
|
[47] |
Bäck, M.; Hansson, G.K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 199–211.
|
[48] |
Xu, Y.K.; Ke, Y.; Wang, B.; Lin, J.H. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biol. Res. 2015, 48, 64.
|
[49] |
Yan, C.H.; Song, X.M.; Yu, W.W.; Wei, F.; Li, H.; Lv, M.G.; Zhang, X.W.; Ren, X.B. Human umbilical cord mesenchymal stem cells delivering sTRAIL home to lung cancer mediated by MCP-1/CCR2 axis and exhibit antitumor effects. Tumour Biol. 2016, 37, 8425–8435.
|
[50] |
Wang, Y.P.; Zhu, M.J.; Xu, H.; Cui, L.; Liu, W.H.; Wang, X.X.; Shen, S.; Wang, D.H. Role of the monocyte chemoattractant protein-1/C-C chemokine receptor 2 signaling pathway in transient receptor potential vanilloid type 1 ablation-induced renal injury in salt-sensitive hypertension. Exp. Biol. Med. 2015, 240, 1223–1234.
|
[51] |
Meerschaert, J.; Furie, M.B. The adhesion molecules used by monocytes for migration across endothelium include CD11a/CD18, CD11b/CD18, and VLA-4 on monocytes and ICAM-1, VCAM-1, and other ligands on endothelium. J. Immunol. 1995, 154, 4099–4112.
|
[1] | 赵炎葱, 王丽, 曾静静, 李景华. 新穿心莲内酯/β-环糊精包合物的分子结构及抗增殖作用研究[J]. 中国药学(英文版), 2023, 32(6): 427-434. |
[2] | 邓凯翔, 彭经宙, 张美泉, 林慧娟, 王小华, 何道兴, 朱俊明, 陈明光, 黄津. 牡蛎肽通过NF-κB/iNOS信号通路改善肝纤维化[J]. 中国药学(英文版), 2023, 32(6): 435-445. |
[3] | 付俊涛, 聂春杰, 李敏, 李嘉, 杜书章. 某院静脉药物调配中心365份不合理肠外营养处方分析[J]. 中国药学(英文版), 2023, 32(6): 487-493. |
[4] | 许凡凡, 巩会平, 刘增强, 吴倩. 左西孟旦在围产期心肌病患者中的临床疗效和安全性[J]. 中国药学(英文版), 2023, 32(2): 138-144. |
[5] | 魏东升, 刘孝生, 李路珍, 齐佳杰, 王雨轩, 张哲. 基于综合生物信息学和单细胞测序方法揭示红花-丹参治疗冠心病的生物学和免疫学机制[J]. 中国药学(英文版), 2023, 32(10): 796-812. |
[6] | 骆少红, 董凉凉, 李逸元, 徐丹, 陈敏. 酪氨酸激酶抑制剂 (吉非替尼、厄洛替尼、阿法替尼和奥希替尼)一线治疗表皮生长因子受体突变的晚期非小细胞肺癌的成本-效果分析[J]. 中国药学(英文版), 2021, 30(3): 253-263. |
[7] | 庞朝海, 田海, 郭晓杰, 王盼, 韩丙军, 阳辛凤. 芒果产业废弃物中快速提取高纯度芒果苷的研究[J]. 中国药学(英文版), 2021, 30(10): 831-837. |
[8] | 鹿梦秋, 梁海珍, 屠鹏飞, 姜勇. 中药九里香两种不同基原植物的药效学比较研究[J]. 中国药学(英文版), 2021, 30(1): 49-57. |
[9] | 天然药物及仿生药物国家重点实验室. 焦宁教授获北京市科学技术奖自然科学一等奖[J]. 中国药学(英文版), 2020, 29(9): 674-674. |
[10] | 李瑞燕, 赵明波, 屠鹏飞, 姜勇. 一标多测法同时测定肉苁蓉中5种苯乙醇苷类成分的含量[J]. 中国药学(英文版), 2019, 28(8): 537-546. |
[11] | 杨东升, 马玲云, 牛剑钊, 许鸣镝. 美国授权仿制药应用简介[J]. 中国药学(英文版), 2019, 28(6): 439-445. |
[12] | 杨东升, 马玲云, 牛剑钊, 许鸣镝. 美国国家药品编码应用简介[J]. 中国药学(英文版), 2019, 28(3): 203-208. |
[13] | 严妍, 李玲, 李蕊, 于文君, 韩毅, 马玉奎, 李妍. 二甲双胍原研制剂格华止?与一种仿制制剂在大鼠模型中药代动力学和药效学比较[J]. 中国药学(英文版), 2019, 28(2): 134-142. |
[14] | 牛剑钊, 杨东升, 许鸣镝. 欧盟仿制药参比制剂检索与确认简介[J]. 中国药学(英文版), 2018, 27(11): 805-812. |
[15] | 杨博威, 梁丹琳, 魏雄, 孟祥豹, 李中军. 7-O-葡萄糖醛酸基芒果苷的半合成[J]. 中国药学(英文版), 2017, 26(8): 556-565. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||