中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (6): 468-483.DOI: 10.5246/jcps.2021.06.036
杨滢霖1,2, 张姗姗1,2, 刘漫1,2, 王月华1,2,*(), 杜冠华1,2,*()
收稿日期:
2020-11-28
修回日期:
2021-02-13
接受日期:
2021-03-15
出版日期:
2021-06-29
发布日期:
2021-06-29
通讯作者:
王月华, 杜冠华
作者简介:
基金资助:
Yinglin Yang1,2, Shanshan Zhang1,2, Man Liu1,2, Yuehua Wang1,2,*(), Guanhua Du1,2,*()
Received:
2020-11-28
Revised:
2021-02-13
Accepted:
2021-03-15
Online:
2021-06-29
Published:
2021-06-29
Contact:
Yuehua Wang, Guanhua Du
摘要:
缺血性中风严重威胁着人类的健康和生活质量。小续命汤是中风治疗的经典方剂, 前期研究发现小续命汤提取物(XXM)对脑缺血大鼠具有改善脑损伤、减轻神经炎症和神经保护作用。本研究旨在探讨XXM对血栓性局灶性脑缺血的影响及其可能机制。与血栓性局灶性脑缺血大鼠相比, XXM治疗后神经功能和运动能力得到改善, 脑梗死体积明显减少。此外, EB渗漏和紧密连接蛋白表达检测BBB完整性的结果表明, XXM能够维持BBB的完整性, 并改善血栓性脑缺血所致缺血同侧皮质中claudin-1、occludin和ZO-1等紧密连接蛋白的表达。此外, 采用非标记蛋白质组学技术对缺血大脑皮层中的差异蛋白进行了鉴定, 结果表明, 在缺血大脑皮层中检测到132种受XXM调控的差异表达蛋白(DEPs)。生物信息学分析表明, XXM调节蛋白主要参与补体、凝血级联和溶酶体等, 而且Lgals3、Ctsz、Capg、C1qa、S100a4、Grn、Hspb1、Aif1、Anxa1等差异蛋白之间存在相互作用。总之, XXM可改善血栓性局灶性缺血性中风的脑损伤, Lgals3、Ctsz、Capg、C1qa、S100a4、Grn、Hspb1、Aif1、Anxa1可为XXM深入研究提供可能的治疗靶点和研究方向。
Supporting:
杨滢霖, 张姗姗, 刘漫, 王月华, 杜冠华. 小续命汤提取物改善血栓性局灶性脑缺血大鼠脑损伤及利用蛋白质组学探讨其可能治疗靶点[J]. 中国药学(英文版), 2021, 30(6): 468-483.
Yinglin Yang, Shanshan Zhang, Man Liu, Yuehua Wang, Guanhua Du. Xiao-Xu-Ming decoction extract ameliorates brain injury in rats with thrombotic focal ischemic stroke and understanding possible therapeutic targets using proteomics[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 468-483.
Figure 1. Effect of XXM on neurobehavioral function in rats with thrombotic focal cerebral ischemia. (A) mNSS test (n = 25); (B) Longa test (n = 15); (C) Coat-hanger tests (n = 15); (D) Rotarod tests (n = 15). Data were presented as mean ± SD. ##P < 0.01 vs. sham group; **P < 0.01 vs. IS group.
Figure 2. Effect of XXM on cerebral infarction volume in rats with thrombotic focal cerebral ischemia. (A) Representative images of cerebral infarction by TTC-stained coronal sections of the brain; (B) Infarct volume calculated from section thickness and infarct area as a result of TTC staining (n = 8); (C) Representative images of cerebral infarction by MRI detection; (D) The infarct volume calculated from section thickness and infarct area as a result of MRI scanning (n = 4). Values are mean ± SD; ##P < 0.01 vs. Sham group; **P < 0.01 vs. IS group.
Figure 3. Effect of XXM on BBB integrity and tight junction (TJ) protein expression in rats with thrombotic focal cerebral ischemia. (A) The coronal sections of brain in EB leakage test; (B) Statistical analysis of EB content (n = 8); (C) The expression of claudin-1, occluding and ZO-1. (D) The relative expression of claudin-1 (n = 6); (E) The relative expression of occludin (n = 6); (F) The relative expression of ZO-1 (n = 6). Data were presented as mean ± SD. #P < 0.05, ##P < 0.01 vs. sham group; *P < 0.05, **P < 0.01 vs. IS group.
Figure 5. GO analysis of the DEPs in the ischemic cortex of rats with thrombotic focal cerebral ischemia. The cut-off of differential expression of mRNA and protein was set at 1.5-fold change and P < 0.05. The above x-axis shows the value of –Log (P-value), the below x-axis shows the number of increased/decreased genes, and the right y-axis shows the functional categories of the increased or decreased genes.
Figure 6. The KEGG analysis of DEPs in the ischemic cortex of rats with thrombotic focal cerebral ischemia. (A) KEGG analysis of DEPs; (B) Interactions of the DEPs through network analysis using the String database. Network nodes represent proteins (each node represents all the proteins produced by a single, protein-coding gene locus). Edges represent protein-protein associations. Colored nodes: query proteins and first shell of interactions. White nodes: the second shell of interactions. Empty nodes: proteins of unknown three-dimensional structure. Filled nodes: some three-dimensional structure is known or predicted.
Figure 7. mRNA expression by qRT-PCR analysis in the ischemic cortex of rats with thrombotic focal cerebral ischemia. Data were presented as mean ± SD (n = 3). ##P < 0.01 vs. sham group; **P < 0.01 vs. IS group.
[1] |
Bernheisel, C.R.; Schlaudecker, J.D.; Leopold, K. Subacute management of ischemic stroke. Am. Fam. Physician. 2011, 84, 1383–1388.
|
[2] |
Barthels, D.; Das, H. Current advances in ischemic stroke research and therapies. Biochim Biophys. Acta Mol. Basis. Dis. 2020, 1866, 165260.
|
[3] |
Cai, Z.; Qiao, P.F.; Wan, C.Q.; Cai, M.; Zhou, N.K.; Li, Q. Role of blood-brain barrier in Alzheimer’s disease. J. Alzheimers. Dis. 2018, 63, 1223–1234.
|
[4] |
Keaney, J.; Campbell, M. The dynamic blood-brain barrier. FEBS J. 2015, 282, 4067–4079.
|
[5] |
Li, W.H.; Cheng, X.; Yang, Y.L.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Res. 2019, 1722, 146361.
|
[6] |
Tsai, T.H.; Song, E.; Zhu, R.; Di Poto, C.; Wang, M.; Luo, Y.; Varghese, R.S.; Tadesse, M.G.; Ziada, D.H.; Desai, C.S.; Shetty, K.; Mechref, Y.; Ressom, H.W. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. Proteomics. 2015, 15, 2369–2381.
|
[7] |
Wang, Y.H.; Yang, Y.L.; Cheng, X.; Zhang, J.; Li, W.; Du, G.H. Xiao-Xu-Ming decoction extract regulates differentially expressed proteins in the hippocampus after chronic cerebral hypoperfusion. Neural. Regen. Res. 2019, 14, 470–479.
|
[8] |
Jia, Z.; Tie, C.; Wang, C.; Wu, C.; Zhang, J. Perturbed lipidomic profiles in rats with chronic cerebral ischemia are regulated by Xiao-xu-Ming decoction. Front. Pharmacol. 2019, 10, 264.
|
[9] |
Cheng, X.; Yang, H.; Yang, Y.L.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Xiao-Xu-Ming decoction extract alleviates LPS-induced neuroinflammation associated with down-regulating TLR4/MyD88 signaling pathway in vitro and in vivo. J. Chin. Pharm. Sci. 2019, 28, 88–99.
|
[10] |
Wang, Y.H.; He, X.L.; Yang, H.G.; Qin, H.L.; Du, G.H. Effects of the effective components group of Xiao-xu-ming Decoction on MCAO rats. Chin. Pharm. J. 2012, 47, 194–198.
|
[11] |
Lan, R.; Xiang, J.; Wang, G.H.; Li, W.W.; Zhang, W.; Xu, L.L.; Cai, D.F. Xiao-xu-Ming decoction protects against blood-brain barrier disruption and neurological injury induced by cerebral ischemia and reperfusion in rats. Evid Based Complement. Alternat. Med. 2013, 2013, 629782.
|
[12] |
Lan, R.; Zhang, Y.; Xiang, J.; Zhang, W.; Wang, G.H.; Li, W.W.; Xu, L.L.; Cai, D.F. Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway. J. Ethnopharmacol. 2014, 151, 307–316.
|
[13] |
Zhang, R.; Liu, C.; Ji, Y.Q.; Teng, L.; Guo, Y.L. Neuregulin-1β plays a neuroprotective role by inhibiting the Cdk5 signaling pathway after cerebral ischemia-reperfusion injury in rats. J. Mol. Neurosci. 2018, 66, 261–272.
|
[14] |
Liu, P.; Tang, Y.Y.; Yang, X.S.; Dai, J.; Yang, M.; Zhang, H.; Liu, Y.; Yan, H.; Song, X.Y. Validation of a preclinical animal model to assess brain recovery after acute stroke. Eur. J. Pharmacol. 2018, 835, 75–81.
|
[15] |
Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Cerebral ischemia-reperfusion aggravated cerebral infarction injury and possible differential genes identified by RNA-Seq in rats. Brain Res. Bull. 2020, 156, 33–42.
|
[16] |
Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J. Mol. Neurosci. 2020, 70, 667–676.
|
[17] |
Bárez-López, S.; Bosch-García, D.; Gómez-Andrés, D.; Pulido-Valdeolivas, I.; Montero-Pedrazuela, A.; Obregon, M.J.; Guadaño-Ferraz, A. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS One. 2014, 9, e103857.
|
[18] |
Wu, G.; McBride, D.W.; Zhang, J.H. Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiol. Dis. 2018, 110, 59–67.
|
[19] |
Sommer, C.J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017, 133, 245–261.
|
[20] |
Li, W.H.; Yang, Y.L.; Cheng, X.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Baicalein attenuates caspase-independent cells death via inhibiting PARP-1 activation and AIF nuclear translocation in cerebral ischemia/reperfusion rats. Apoptosis. 2020, 25, 354–369.
|
[21] |
Grysiewicz, R.A.; Thomas, K.; Pandey, D.K. Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors. Neurol. Clin. 2008, 26, 871–95, vii.
|
[22] |
Campbell, B.C. Thrombolysis and thrombectomy for acute ischemic stroke: strengths and synergies. Semin. Thromb. Hemost. 2017, 43, 185–190.
|
[23] |
McBride, D.W.; Zhang, J.H. Precision stroke animal models: the permanent MCAO model should be the primary model, not transient MCAO. Transl. Stroke Res. 2017, 8, 397–404.
|
[24] |
Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol. 2018, 315, C343–C356.
|
[25] |
Sladojevic, N.; Stamatovic, S.M.; Johnson, A.M.; Choi, J.; Hu, A.N.; Dithmer, S.; Blasig, I.E.; Keep, R.F.; Andjelkovic, A.V. Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J. Neurosci. 2019, 39, 743–757.
|
[26] |
Jiao, H.X.; Wang, Z.H.; Liu, Y.H.; Wang, P.; Xue, Y.X. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J. Mol. Neurosci. 2011, 44, 130–139.
|
[27] |
Walther, T.C.; Mann, M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 2010, 190, 491–500.
|
[28] |
Satyam, A.; Graef, E.R.; Lapchak, P.H.; Tsokos, M.G.; Dalle Lucca, J.J.; Tsokos, G.C. Complement and coagulation cascades in trauma. Acute. Med. Surg. 2019, 6, 329–335.
|
[29] |
Comte, I.; Kim, Y.; Young, C.C.; van der Harg, J.M.; Hockberger, P.; Bolam, P.J.; Poirier, F.; Szele, F.G. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J. Cell Sci. 2011, 124, 2438–2447.
|
[30] |
James, R.E.; Hillis, J.; Adorján, I.; Gration, B.; Mundim, M.V.; Iqbal, A.J.; Majumdar, M.M.; Yates, R.L.; Richards, M.M.; Goings, G.E.; DeLuca, G.C.; Greaves, D.R.; Miller, S.D.; Szele, F.G. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016, 64, 105–121.
|
[31] |
Lalancette-Hébert, M.; Swarup, V.; Beaulieu, J.M.; Bohacek, I.; Abdelhamid, E.; Weng, Y.C.; Sato, S.; Kriz, J. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J. Neurosci. 2012, 32, 10383–10395.
|
[32] |
Sirko, S.; Irmler, M.; Gascón, S.; Bek, S.; Schneider, S.; Dimou, L.; Obermann, J.; De Souza Paiva, D.; Poirier, F.; Beckers, J.; Hauck, S.M.; Barde, Y.A.; Götz, M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia. 2015, 63, 2340–2361.
|
[33] |
Young, C.C.; Al-Dalahmah, O.; Lewis, N.J.; Brooks, K.J.; Jenkins, M.M.; Poirier, F.; Buchan, A.M.; Szele, F.G. Blocked angiogenesis in Galectin-3 null mice does not alter cellular and behavioral recovery after middle cerebral artery occlusion stroke. Neurobiol. Dis. 2014, 63, 155–164.
|
[34] |
Lerman, B.J.; Hoffman, E.P.; Sutherland, M.L.; Bouri, K.; Hsu, D.K.; Liu, F.T.; Rothstein, J.D.; Knoblach, S.M. Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav. 2012, 2, 563–575.
|
[35] |
Jiang, H.R.; Al Rasebi, Z.; Mensah-Brown, E.; Shahin, A.; Xu, D.M.; Goodyear, C.S.; Fukada, S.Y.; Liu, F.T.; Liew, F.Y.; Lukic, M.L. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J. Immunol. 2009, 182, 1167–1173.
|
[1] | 拓文静, 华若辰, 李星玥, 宋继红, 卢闻. 基于不同种属细胞体外血脑屏障模型的药物渗透性比较[J]. 中国药学(英文版), 2023, 32(4): 237-249. |
[2] | 杨滢霖, 张姗姗, 刘漫, 刘冬妮, 王月华, 杜冠华. 小续命汤抗缺血性脑卒中网络药理学分析及其抗炎和神经血管保护机制的体内验证[J]. 中国药学(英文版), 2022, 31(5): 343-359. |
[3] | 宋宇靖, 赵旭阳, 陈倩, 宋艳, 雷婉玉, 尹玉新, 马维宁, 黄卓. 应用蛋白质组学方法评估抗癫痫药物卡马西平对颞叶癫痫患者脑组织蛋白质组的影响[J]. 中国药学(英文版), 2020, 29(1): 13-28. |
[4] | 吴柏林, 郝亚萌, 陈颖, 刘乾, 田超, 张志丽, 刘俊义, 王孝伟. 咖啡酸酯类衍生物作为神经保护剂的构效关系研究[J]. 中国药学(英文版), 2019, 28(9): 615-626. |
[5] | 赵思育, 刘晓岩, 朱元军, 刘晔, 王银叶. 具有脑保护作用的化合物W026B的蛋白质组学研究和靶点发现[J]. 中国药学(英文版), 2019, 28(6): 381-392. |
[6] | 程笑, 杨欢, 杨滢霖, 李伟瀚, 刘漫, 王月华, 杜冠华. 小续命汤提取物下调TLR4/MyD88信号通路减轻脂多糖诱导神经炎症的体内外研究[J]. 中国药学(英文版), 2019, 28(2): 88-99. |
[7] | 何鹿玲, 龚琴, 余煊, 王木兰, 翁莎莎, 雷帆, 高红伟, 罗颖颖, 冯育林, 杨世林, 李俊, 杜力军. 腺嘌呤所致大鼠肾损伤的蛋白质组变化及其白头翁皂苷B4的调节作用[J]. 中国药学(英文版), 2019, 28(1): 10-20. |
[8] | 郑怡然, 吴秀稳, 杨秀伟. 20(S)-原人参三醇和20(R)-原人参三醇差向异构体及达玛-20(22)E,24-二烯-3β,6α,12β-三醇在MDCK-pHaMDR细胞单层模型中的跨血脑屏障研究[J]. 中国药学(英文版), 2017, 26(8): 566-573. |
[9] | 朱仁宗, 宁显玲, 张志丽, 王孝伟, 田超, 刘俊义*. 咖啡酸苯乙酯酰化衍生物的设计、合成及其作为抗氧化应激损伤的中枢神经保护剂的活性评估[J]. 中国药学(英文版), 2013, 22(6): 475-482. |
[10] | 刘春云, 丰玲, 尉杰忠, 郭敏芳, 孙永胜, 纪宁, 孟健, 梁丽云, 马存根*. 氨基葡萄糖对EAE大鼠BBB和MMP-9的作用[J]. , 2011, 20(2): 188-194. |
[11] | 赵康峰, 王琪, 蒲小平*, 杨秀伟, 朱玉真. 一种新型微孔底膜插入式培养皿的制作方法[J]. , 2004, 13(4): 276-281. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||