[1] |
Vllasaliu, D.; Thanou, M.; Stolnik, S.; Fowler, R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin. Drug Deliv. 2018, 15, 759–770.
|
[2] |
Liu, C.; Kou, Y.Q.; Zhang, X.; Cheng, H.B.; Chen, X.Z.; Mao, S.R. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin. Drug Deliv. 2018, 15, 223–233.
|
[3] |
Yang, D.; Liu, D.C.; Deng, H.L.; Zhang, J.; Qin, M.M.; Yuan, L.; Zou, X.J.; Shao, B.; Li, H.P.; Dai, W.B.; Zhang, H.; Wang, X.Q.; He, B.; Tang, X.; Zhang, Q. Transferrin functionization elevates transcytosis of nanogranules across epithelium by triggering polarity-associated transport flow and positive cellular feedback loop. ACS Nano. 2019, 13, 5058–5076.
|
[4] |
Fan, W.W.; Xia, D.N.; Zhu, Q.L.; Hu, L.; Gan, Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov. Today. 2016, 21, 856–863.
|
[5] |
Araújo, F.; Shrestha, N.; Granja, P.L.; Hirvonen, J.; Santos, H.A.; Sarmento, B. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin. Drug Metab. Toxicol. 2015, 11, 381–393.
|
[6] |
Chithrani, D.B. Optimization of bio-nano interface using gold nanostructures as a model nanoparticle system. Insciences J. 2011, 115–135.
|
[7] |
Aminabad, N.S.; Farshbaf, M.; Akbarzadeh, A. Recent advances of gold nanoparticles in biomedical applications: state of the art. Cell Biochem. Biophys. 2019, 77, 123–137.
|
[8] |
Alalaiwe, A.; Roberts, G.; Carpinone, P.; Munson, J.; Roberts, S. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats. Drug Deliv. 2017, 24, 591–598.
|
[9] |
Walther, T.C.; Mann, M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 2010, 190, 491–500.
|
[10] |
Bastús, N.G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011, 27, 11098–11105.
|
[11] |
Tyanova, S.; Temu, T.; Carlson, A.; Sinitcyn, P.; Mann, M.; Cox, J. Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics. 2015, 15, 1453–1456.
|
[12] |
Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016, 13, 731.
|
[13] |
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315.
|
[14] |
He, B.; Lin, P.; Jia, Z.R.; Du, W.W.; Qu, W.; Yuan, L.; Dai, W.B.; Zhang, H.; Wang, X.Q.; Wang, J.C.; Zhang, X.; Zhang, Q. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 2013, 34, 6082–6098.
|
[15] |
Koivusalo, M.; Welch, C.; Hayashi, H.; Scott, C.C.; Kim, M.; Alexander, T.; Touret, N.; Hahn, K.M.; Grinstein, S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010, 188, 547–563.
|
[16] |
Canton, I.; Battaglia, G. Endocytosis at the nanoscale. Chem. Soc. Rev. 2012, 41, 2718.
|
[17] |
Kulkarni, R.P.; Castelino, K.; Majumdar, A.; Fraser, S.E. Intracellular transport dynamics of endosomes containing DNA polyplexes along the microtubule network. Biophys. J. 2006, 90, L42–L44.
|
[18] |
Piper, R.C.; Katzmann, D.J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 2007, 23, 519–547.
|
[19] |
Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009, 10, 623.
|
[20] |
Qin, M.M.; Zhang, J.; Li, M.H.; Yang, D.; Liu, D.C.; Song, S.Y.; Fu, J.J.; Zhang, H.; Dai, W.B.; Wang, X.Q.; Wang, Y.G.; He, B.; Zhang, Q. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics. 2020, 10, 1213–1229.
|
[21] |
He, B.; Shi, Y.J.; Liang, Y.Q.; Yang, A.P.; Fan, Z.P.; Yuan, L.; Zou, X.J.; Chang, X.; Zhang, H.; Wang, X.Q.; Dai, W.B.; Wang, Y.G.; Zhang, Q. Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat. Commun. 2018, 9, 2393.
|