中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (2): 119-132.DOI: 10.5246/jcps.2021.02.010
石璐1,#, 苗丰1,#, 汪国鹏2, 孙文燕1,*(), 刘洋3,*()
收稿日期:
2020-11-10
修回日期:
2020-11-24
接受日期:
2020-12-08
出版日期:
2021-02-28
发布日期:
2021-02-27
通讯作者:
孙文燕, 刘洋
作者简介:
Lu Shi1,#, Feng Miao1,#, Guopeng Wang2, Wenyan Sun1,*(), Yang Liu3,*()
Received:
2020-11-10
Revised:
2020-11-24
Accepted:
2020-12-08
Online:
2021-02-28
Published:
2021-02-27
Contact:
Wenyan Sun, Yang Liu
About author:
摘要:
在本次研究中,我们旨在开发和评价沙格列汀的全身生理药代动力学(WB-PBPK)/药效学(PD) 模型, 模拟其在健康成人及肝功能损害患者中的药代动力学和药效学特性, 为特殊患者的临床药学研究提供新方法。基于文献中获取的如logD和血浆蛋白结合率等药物特征参数, 建立WB-PBPK模型和PD模型。将模拟所得的血药浓度-时间曲线及药代动力学参数与临床研究数据进行比较,优化WB-PBPK模型。将模拟所得的DPP-4抑制曲线与临床药效学数据进行比较, 优化PD模型。该PK/PD模型用于预测不同程度肝损伤患者的药代动力学和药效学特征。模型预测的药代动力学曲线与实测的健康和肝损伤受试者曲线重合度良好(Cmax和AUC倍数误差小于1.3倍)。模型预测的药效学曲线与实测值拟合良好, 并成功预测了沙格列汀在肝损伤受试者中的药效学状态。该试验所建立的WB-PBPK/PD模型可较好模拟沙格列汀在正常成人和不同程度肝功能受损患者体内的药代动力学和药效学。
Supporting:
石璐, 苗丰, 汪国鹏, 孙文燕, 刘洋. 构建沙格列汀PK/PD模型——模拟其在健康人群和肝损伤患者的药动学和药效学[J]. 中国药学(英文版), 2021, 30(2): 119-132.
Lu Shi, Feng Miao, Guopeng Wang, Wenyan Sun, Yang Liu. A PK/PD model of saxagliptin: to simulate its pharmacokinetics and pharmacodynamics in healthy adults and patients with impaired hepatic function[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 119-132.
Figure 1. Schematic structure of the whole-body PBPK model used to predict in vivo behaviors of saxagliptin in different human populations. The blood flow rates associated with the 14 compartments-lung (Lu), liver (Li), spleen (Sp), gut (AC), adipose (Ad), muscle (Mu), heart (He), brain (Br), kidney (Ki), skin (Sk), reproductive organ (RO), red marrow (RM), yellow marrow (YM), rest of body (ROB), are represented by Q, subscripted with the corresponding compartment. Qha is the blood flow rate to the liver via hepatic artery (ha).
Figure 2. Simulated (line) and observed (points) plasma concentration-time profiles after 40 μg intravenous administration in healthy subjects (29 years old, western).
Figure 3. Simulated (line) and observed (points) plasma concentration-time profiles after 5 mg administration in healthy subjects (42 years old, western).
Figure 4. Simulated (line) and observed (points) plasma concentration-time profiles after 2.5 mg administration in healthy subjects (29 years old, western).
Figure 5. Simulated (line) and observed (points) plasma concentration-time profiles after 50 mg administration in healthy subjects (29 years old, western).
Figure 6. Simulated (line) and observed (points) plasma concentration-time curve in patients with mild hepatic impairment after 10 mg oral administration (52 years old, western).
Figure 7. Simulated (line) and observed (points) plasma concentration-time curve in patients with moderate hepatic impairment after 10 mg oral administration (52 years old, western).
Figure 8. Simulated (line) and observed (points) plasma concentration-time curve in patients with severe hepatic impairment after 10 mg oral administration (51 years old, western).
Table 6. Observed and predicted pharmacokinetic parameters of saxagliptin between different patients with hepatic impairment after oral 10 mg administration.
Figure 9. Simulated (lines) and observed (points) pharmacokinetic and pharmacodynamic profile after 5 mg oral administration in healthy subjects (42 years old, western).
Figure 10. Simulate (lines) and observed (points) pharmacokinetic and pharmacodynamic profile after 2.5, 5 50 mg oral administration in healthy adults (42 and 29 years old, western) before optimized.
Figure 11. Simulate (lines) and observed (points) pharmacokinetic and pharmacodynamic profile after 2.5, 5, 50 mg oral administration in healthy adults (42 and 29 years old, western) after optimization.
[1] |
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014, 37, S81–S90.
|
[2] |
Holst, J.J.; Knop, F.K.; Vilsbøll, T.; Krarup, T.; Madsbad, S. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care. 2011, 34, S251–S257.
|
[3] |
Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26, 2929–2940.
|
[4] |
Verspohl, E.J. Novel therapeutics for type 2 diabetes: incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors. Pharmacol. Ther. 2009, 124, 113–138.
|
[5] |
Holz, G.G.; Kang, G.X.; Harbeck, M.; Roe, M.W.; Chepurny, O.G. Cell physiology of cAMP sensor Epac. J. Physiol. 2006, 577, 5–15.
|
[6] |
Drucker, D.J.; Nauck, M.A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006, 368, 1696–1705.
|
[7] |
Neumiller, J.J. Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. J. Am. Pharm. Assoc. 2009, 49, S16–S29.
|
[8] |
Augeri, D.J.; Robl, J.A.; Betebenner, D.A.; Magnin, D.R.; Khanna, A.; Robertson, J.G.; Wang, A.Y.; Simpkins, L.M.; Taunk, P.; Huang, Q.; Han, S.P.; Abboa-Offei, B.; Cap, M.; Xin, L.; Tao, L.; Tozzo, E.; Welzel, G.E.; Egan, D.M.; Marcinkeviciene, J.; Chang, S.Y.; Biller, S.A.; Kirby, M.S.; Parker, R.A.; Hamann, L.G. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2005, 48, 5025–5037.
|
[9] |
Wang, A.Y.; Dorso, C.; Kopcho, L.; Locke, G.; Langish, R.; Harstad, E.; Shipkova, P.; Marcinkeviciene, J.; Hamann, L.; Kirby, M.S. Potency, selectivity and prolonged binding of saxagliptin to DPP4: maintenance of DPP4 inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor. BMC Pharmacol. 2012, 12, 1–11.
|
[10] |
Deacon, C.F.; Holst, J.J. Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Adv. Ther. 2009, 26, 488–499.
|
[11] |
Scheen, A.J. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes. Metab. 2010, 12, 648–658.
|
[12] |
Scheen, A.J. A review of gliptins in 2011. Expert opin. Pharmacother. 2012, 13, 81–99.
|
[13] |
Rodighiero, V. Effects of liver disease on pharmacokinetics. Clin. Pharmacokinet. 1999, 37, 399–431.
|
[14] |
Su, H.; Boulton, D.W.; Barros, A.; Wang, L.F.; Cao, K.; Bonacorsi, S.J.; Iyer, R.A.; Humphreys, W.G.; Christopher, L.J. Characterization of the in vitro and in vivo metabolism and disposition and cytochrome P450 inhibition/induction profile of saxagliptin in human. Drug Metab. Dispos.: Biol. Fate Chem. 2012, 40, 1345–1356.
|
[15] |
Boulton, D.; Li, L.; Frevert, E.U.; Tang, A.; Castaneda, L.; Vachharajani, N.N.; Kornhauser, D.M.; Patel, C.G. Influence of renal or hepatic impairment on the pharmacokinetics of saxagliptin. Clin. Pharmacokinet. 2011, 50, 253–265.
|
[16] |
Boulton, D.W.; Kasichayanula, S.; Keung, C.F.A.; Arnold, M.E.; Christopher, L.J.; Xu, X.S.; Lacreta, F. Simultaneous oral therapeutic and intravenous 14C-microdoses to determine the absolute oral bioavailability of saxagliptin and dapagliflozin. Br. J. Clin. Pharmacol. 2013, 75, 763–768.
|
[17] |
Boulton, D.W. Clinical pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor. Clin. Pharmacokinet. 2017, 56, 11–24.
|
[18] |
Upreti, V.V.; Boulton, D.W.; Li, L.; Ching, A.; Su, H.; LaCreta, F.P.; Patel, C.G. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor, in healthy subjects. Br. J. Clin. Pharmacol. 2011, 72, 92–102.
|
[19] |
Li, G.F.; Wang, K.; Chen, R.; Zhao, H.R.; Yang, J.; Zheng, Q.S. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol. Sin. 2012, 33, 1359–1371.
|
[20] |
Li, J.; Guo, H.F.; Liu, C.; Zhong, Z.Y.; Liu, L.; Liu, X.D. Prediction of drug disposition in diabetic patients by means of a physiologically based pharmacokinetic model. Clin. Pharmacokinet. 2015, 54, 179–193.
|
[21] |
Vaidyanathan, J.; Zdrojewski, I. Clinical pharmacology and biopharmaceutics review(s). Cent. Drug Eval. Res. 2008, 1–127.
|
[22] |
Vaidyanathan, J.; Choe, S. Placebo-controlled,ascending multiple-dose study to evaluate the safety, pharmacokinetics and pharmacodynamics of higher doses of saxagliptin (BMS-477118) in healthy subjects. ONGLYZA. 2009, 128–203.
|
[23] |
Jones, H.M.; Parrott, N.; Jorga, K.; Lavé, T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin. Pharmacokinet. 2006, 45, 511–542.
|
[24] |
Webb, J.A.; Rostami-Hodjegan, A.; Abdul-Manap, R.; Hofmann, U.; Mikus, G.; Kamali, F. Contribution of dihydrocodeine and dihydromorphine to analgesia following dihydrocodeine administration in man: a PK-PD modelling analysis. Br. J. Clin. Pharmacol. 2001, 52, 35–43.
|
[25] |
Patel, C.G.; Li, L.; Girgis, S.; Kornhauser, D.M.; Frevert, E.U.; Boulton, D.W. Two-way pharmacokinetic interaction studies between saxagliptin and cytochrome P450 substrates or inhibitors: simvastatin, diltiazem extended-release, and ketoconazole. Clin. Pharmacol. 2011, 3, 13–25.
|
[26] |
Munir, A.; Azam, S.; Fazal, S.; Bhatti, A.I. Evaluation of the whole body physiologically based pharmacokinetic (WB-PBPK) modeling of drugs. J. Theor. Biol. 2018, 451, 1–9.
|
[27] |
Li, L.; Yang, J.B. Application progress of physiologically-based pharmacokinetic model in clinical development of novel molecular entities. Chin. J. Clin. Pharmacol. 2017, 17, 1728–1732.
|
[28] |
Upton, R.N.; Foster, D.J.R.; Abuhelwa, A.Y. An introduction to physiologically-based pharmacokinetic models. Paediatr. Anaesth. 2016, 26, 1036–1046.
|
[29] |
Rowland, M.; Balant, L.; Peck, C. Physiologically based pharmacokinetics in Drug Development and Regulatory Science: a workshop report (Georgetown University, Washington, DC, May 29-30, 2002). AAPS PharmSci. 2004, 6, 56–67.
|
[30] |
Peters, S.A. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin. Pharmacokinet. 2008, 47, 245–259.
|
[31] |
Parrott, N.; Lave, T. Applications of physiologically based absorption models in drug discovery and development. Mol. Pharm. 2008, 5, 760–775.
|
[32] |
Gu, W.J. Role of different dipeptidypeptidase-4 inhibitors in specific populations with type 2 diabetes. Drugs Clin. 2015, 23, 20–23.
|
[33] |
Lu, J.M. The clinical research progress of saxagliptin. Chin. J. Diabetes. 2012, 4, 316–320.
|
[1] | 敖民, 包明兰, 侯亚星, 月英, 李慧芳, 吴国华, 苏日嘎拉图. 基于网络药理学的蒙药肋柱花抗急性肝损伤作用机制研究[J]. 中国药学(英文版), 2023, 32(4): 268-282. |
[2] | 靳永文, 席莉莉, 魏玉辉, 武新安. 基于大鼠血清胆酸盐水平构建药物性肝损伤随机森林分类模型[J]. 中国药学(英文版), 2022, 31(9): 677-688. |
[3] | 沈洁, 杨凯, 孙彩华, 蒋程, 郑敏霞. 含何首乌的中成药致肝损伤的临床分析[J]. 中国药学(英文版), 2022, 31(4): 289-297. |
[4] | 蒋雯, 韦亦霖, 温清, 史革鑫, 赵恒利. 美他多辛通过抑制巨噬细胞和中性粒细胞向肝脏浸润缓解急性酒精性肝损伤[J]. 中国药学(英文版), 2022, 31(1): 47-54. |
[5] | 韩春杨, 孙桃桃, 范广太, 刘亚伟, 刘翠艳. 黄精通过氧化应激和线粒体凋亡途径保护CCl4诱导的大鼠急性肝损伤[J]. 中国药学(英文版), 2021, 30(4): 306-318. |
[6] | 靳永文, 饶志, 武艳芳, 张国强, 石阿茜, 魏玉辉, 武新安. 对乙酰氨基酚诱导的大鼠胆酸盐蓄积性肝损伤机制研究[J]. 中国药学(英文版), 2018, 27(7): 498-509. |
[7] | 姚莉, 范芳芳, 胡兰, 赵生俊, 郑丽丽. 沙格列汀治疗成人2型糖尿病的有效性和安全性: 基于随机对照试验的meta分析[J]. 中国药学(英文版), 2016, 25(2): 128-139. |
[8] | 刘晓岩, 李凤云, 池志宏, 王银叶*. 口服1,6-二磷酸果糖对动物肝损伤模型的保护作用[J]. , 2006, 15(3): 188-193. |
[9] | 张岭, 潘建春, 库宝善*. 维生素C赖氨酸对小鼠四氯化碳肝损伤和乙醇肝损伤的保护作用[J]. , 2004, 13(4): 288-290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||