[1] Yang, G.B.; Phua, S.Z.F.; Bindra, A.K.; Zhao, Y.L. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 2019, 31, 1805730.
[2] Bayda, S.; Hadla, M.; Palazzolo, S.; Riello, P.; Corona, G.; Toffoli, G.; Rizzolio, F. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr. Med. Chem. 2018, 25, 4269-4303.
[3] Chen, S.Z.; Hao, X.H.; Liang, X.J.; Zhang, Q.; Zhang, C.M.; Zhou, G.Q.; Shen, S.G.; Jia, G.; Zhang, J.C. Inorganic nanomaterials as carriers for drug delivery. J. Biomed. Nanotechnol. 2016, 12, 1-27.
[4] Tao, Y.; Ju, E.G.; Liu, Z.; Dong, K.; Ren, J.S.; Qu, X.G. Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy. Biomaterials. 2014, 35, 6646-6656.
[5] Zhang, X.; Xi, Z.Q.; Machuki, J.O.; Luo, J.J.; Yang, D.Z.; Li, J.J.; Cai, W.B.; Yang, Y.; Zhang, L.J.; Tian, J.W.; Guo, K.J.; Yu, Y.Y.; Gao, F.L. Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging. ACS Nano. 2019, 13, 5306-5325.
[6] Han, X.X.; Xu, Y.; Li, Y.Y.; Zhao, X.; Zhang, Y.L.; Min, H.; Qi, Y.Q.; Anderson, G.J.; You, L.H.; Zhao, Y.L.; Nie, G.J. An extendable star-like nanoplatform for functional and anatomical imaging-guided photothermal oncotherapy. ACS Nano. 2019, 13, 4379-4391.
[7] Lv, R.; Yang, P.P.; He, F.; Gai, S.L.; Yang, G.X.; Dai, Y.L.; Hou, Z.Y.; Lin, J. An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. Biomaterials. 2015, 63, 115-127.
[8] Wu, M.Y.; Meng, Q.S.; Chen, Y.; Du, Y.Y.; Zhang, L.X.; Li, Y.P.; Zhang, L.L.; Shi, J.L. Large-pore ultrasmall mesoporous organosilica nanoparticles: micelle/precursor Co-templating assembly and nuclear-targeted gene delivery. Adv. Mater. 2015, 27, 215-222.
[9] Wei, H.; Bruns, O.T.; Kaul, M.G.; Hansen, E.C.; Barch, M.; Wiśniowska, A.; Chen, O.; Chen, Y.; Li, N.; Okada, S.; Cordero, J.M.; Heine, M.; Farrar, C.T.; Montana, D.M.; Adam, G.; Ittrich, H.; Jasanoff, A.; Nielsen, P.; Bawendi, M.G. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. PNAS. 2017, 114, 2325-2330.
[10] Yan, H.; Shang, W.T.; Sun, X.D.; Zhao, L.Y.; Wang, J.Y.; Xiong, Z.Y.; Yuan, J.; Zhang, R.R.; Huang, Q.L.; Wang, K.; Li, B.H.; Tian, J.; Kang, F.Y.; Feng, S.S. “All-in-one” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous administration. Adv. Funct. Mater. 2018, 28, 1705710.
[11] Wu, H.A.; Liu, L.; Song, L.N.; Ma, M.; Gu, N.; Zhang, Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano. 2019, 13, 14013-14023.
[12] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 2008, 5, 763.
[13] Sharma, V.K.; Siskova, K.M.; Zboril, R.; Gardea-Torresdey, J.L. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci. 2014, 204, 15-34.
[14] Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release. 2013, 166, 182-194.
[15] Izak-Nau, E.; Voetz, M.; Eiden, S.; Duschl, A.; Puntes, V.F. Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Part. Fibre Toxicol. 2013, 10, 1-12.
[16] Xiong, H.M. ZnO nanoparticles applied to bioimaging and drug delivery. Adv. Mater. 2013, 25, 5329-5335.
[17] Xiong, H.M.; Xu, Y.; Ren, Q.G.; Xia, Y.Y. Stable aqueous ZnO@Polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. J. Am. Chem. Soc. 2008, 130, 7522-7523.
[18] Wang, J.; Lee, J.S.; Kim, D.; Zhu, L. Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl. Mater. Interfaces. 2017, 9, 39971-39984.
[19] Deng, Y.X.; Zhang, H.J. The synergistic effect and mechanism of doxorubicin-ZnO nanocomplexes as a multimodal agent integrating diverse anticancer therapeutics. Int. J. Nanomed. 2013, 8, 1835-1841.
[20] Shi, J.W.; Karlsson, H.L.; Johansson, K.; Gogvadze, V.; Xiao, L.S.; Li, J.T.; Burks, T.; Garcia-Bennett, A.; Uheida, A.; Muhammed, M.; Mathur, S.; Morgenstern, R.; Kagan, V.E.; Fadeel, B. Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano. 2012, 6, 1925-1938.
[21] Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert. Opin. Drug Deliv. 2010, 7, 1063-1077.
[22] Müller, K.H.; Kulkarni, J.; Motskin, M.; Goode, A.; Winship, P.; Skepper, J.N.; Ryan, M.P.; Porter, A.E. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano. 2010, 4, 6767-6779.
[23] Muhammad, F.; Guo, M.Y.; Qi, W.X.; Sun, F.X.; Wang, A.F.; Guo, Y.J.; Zhu, G.S. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778-8781.
[24] Cai, X.L.; Luo, Y.N.; Yan, H.Y.; Du, D.; Lin, Y.H. pH-responsive ZnO nanocluster for lung cancer chemotherapy. ACS Appl. Mater. Interfaces. 2017, 9, 5739-5747.
[25] Tang, X.S.; Choo, E.S.G.; Li, L.; Ding, J.; Xue, J.M. One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications. Langmuir. 2009, 25, 5271-5275.
[26] Ye, D.X.; Ma, Y.Y.; Zhao, W.; Cao, H.M.; Kong, J.L.; Xiong, H.M.; Möhwald, H. ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano. 2016, 10, 4294-4300.
[27] Xiong, H.M. Photoluminescent ZnO nanoparticles modified by polymers. J. Mater. Chem. 2010, 20, 4251-4262.
[28] Zhang, S.; Li, Z.T.; Liu, M.; Wang, J.R.; Xu, M.Q.; Li, Z.Y.; Duan, X.C.; Hao, Y.L.; Zheng, X.C.; Li, H.; Feng, Z.H.; Zhang, X. Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells. J. Control. Release. 2019, 295, 102-117.
[29] Guo, Y.; Zhong, T.; Duan, X.C.; Zhang, S.; Yao, X.; Yin, Y.F.; Huang, D.; Ren, W.; Zhang, Q.; Zhang, X. Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix. Drug Deliv. 2017, 24, 270-277.
[30] Hao, Y.L. The cellular uptake and anti-tumor activity of conjugated linoleic acid-paclitaxel-loaded iRGD-modified lysolipid-containing thermosensitive liposomes. J. Chin. Pharm. Sci. 2019, 28, 121-133.
[31] Kwon, B.J.; Woo, H.J.; Park, J.Y.; Jang, K.; Lim, S.H.; Cho, Y.H. Optical properties of ZnO powder prepared by using a proteic sol-gel process. J. Korean Phys. Soc. 2013, 62, 739-742.
[32] Rattana, T.; Suwanboon, S.; Amornpitoksuk, P.; Haidoux, A.; Limsuwan, P. Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution. J. Alloy. Compd. 2009, 480, 603-607.
[33] Schwartz, D.A.; Norberg, N.S.; Nguyen, Q.P.; Parker, J.M.; Gamelin, D.R. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205-13218.
[34] Wang, X.Y.; Wang, T.; Ma, J.; Liu, H.L.; Ning, P. Synthesis and characterization of a new hydrophilic boehmite-PVB/PVDF blended membrane supported nano zero-valent iron for removal of Cr(VI). Sep. Purif. Technol. 2018, 205, 74-83.
[35] Misra, N.; Roy, M.; Mohanta, D.; Baruah, K.K.; Choudhury, A. Photochromism and magneto-optic response of ZnO: Mn semiconductor quantum dots fabricated by microemulsion route. Cent. Eur. J. Phys. 2008, 6, 109-115.
[36] Liu, Y.; Liu, M. Growth of aligned square-shaped SnO2 tube arrays. Adv. Funct. Mater. 2005, 15, 57-62.
[37] Lang, J.H.; Li, X.; Yang, J.H.; Yang, L.L.; Zhang, Y.J.; Yan, Y.S.; Han, Q.; Wei, M.B.; Gao, M.; Liu, X.Y.; Wang, R. Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method. Appl. Surf. Sci. 2011, 257, 9574-9577.
[38] Zhang, L.Y.; Yin, L.W.; Wang, C.X.; Lun, N.; Qi, Y.X. Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 2010, 2, 1769-1773.
[39] Zeng, H.B.; Yang, S.K.; Cai, W.P. Reshaping formation and luminescence evolution of ZnO quantum dots by laser-induced fragmentation in liquid. J. Phys. Chem. C. 2011, 115, 5038-5043. |