[1] Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell. 2012, 149, 274-293.
[2] Keith, C.T.; Schreiber, S.L. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science. 1995, 270, 50-51.
[3] Guertin, D.A.; Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell. 2007, 12, 9-22.
[4] Marosvári, D.; Nagy, N.; Kriston, C.; Deák, B.; Hajdu, M.; Bödör, C.; Csala, I.; Bagó, A.G.; Szállási, Z.; Sebestyén, A.; Reiniger, L. Discrepancy between low levels of mTOR activity and high levels of P-S6 in primary central nervous system lymphoma may be explained by PAS domain-containing serine/threonine-protein kinase-mediated phosphorylation. J. Neuropathol. Exp. Neurol. 2018, 77, 268-273.
[5] Tavares, M.K.; Dos Reis, S.; Platt, N.; Heinrich, I.A.; Wolin, I.A.V.; Leal, R.B.; Kaster, M.P.; Rodrigues, A.L.S.; Freitas, A.E. Agmatine potentiates neuroprotective effects of subthreshold concentrations of ketamine via mTOR/S6 kinase signaling pathway. Neurochem. Int. 2018, 118, 275-285.
[6] Bauriedel, G.; Jabs, A.; Kraemer, S.; Nickenig, G.; Skowasch, D. Neointimal expression of rapamycin receptor FK506-binding protein FKBP12: postinjury animal and human in-stent restenosis tissue characteristics. J. Vasc. Res. 2008, 45, 173-178.
[7] Yang, H.J.; Rudge, D.G.; Koos, J.D.; Vaidialingam, B.; Yang, H.J.; Pavletich, N.P. mTOR kinase structure, mechanism and regulation. Nature. 2013, 497, 217-223.
[8] Choi, J.; Chen, J.; Schreiber, S.L.; Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science. 1996, 273, 239-242.
[9] Li, S.Y.; Liang, Y.; Wu, M.L.; Wang, X.J.; Fu, H.X.; Chen, Y.H.; Wang, Z.G. The novel mTOR inhibitor CCI-779 (temsirolimus) induces antiproliferative effects through inhibition of mTOR in Bel-7402 liver cancer cells. Cancer Cell Int. 2013, 13, 30.
[10] Liu, H.Y.; Zang, C.B.; Schefe, J.H.; Schwarzlose-Schwarck, S.; Regierer, A.C.; Elstner, E.; Schulz, C.O.; Scholz, C.; Possinger, K.; Eucker, J. The mTOR inhibitor RAD001 sensitizes tumor cells to the cytotoxic effect of carboplatin in breast cancer in vitro. Anticancer Res. 2011, 31, 2713-2722.
[11] Rivera, V.M.; Squillace, R.M.; Miller, D.; Berk, L.; Wardwell, S.D.; Ning, Y.Y.; Pollock, R.; Narasimhan, N.I.; Iuliucci, J.D.; Wang, F.; Clackson, T. Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens. Mol. Cancer Ther. 2011, 10, 1059-1071.
[12] Chresta, C.M.; Davies, B.R.; Hickson, I.; Harding, T.; Cosulich, S.; Critchlow, S.E.; Vincent, J.P.; Ellston, R.; Jones, D.; Sini, P.; James, D.; Howard, Z.; Dudley, P.; Hughes, G.; Smith, L.; Maguire, S.; Hummersone, M.; Malagu, K.; Menear, K.; Jenkins, R.; Jacobsen, M.; Smith, G.C.M.; Guichard, S.; Pass, M. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010, 70, 288-298.
[13] Tian, T.; Li, X.Y.; Zhang, J.H. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci. 2019, 20, 755.
[14] Rodrik-Outmezguine, V.S.; Okaniwa, M.; Yao, Z.; Novotny, C.J.; McWhirter, C.; Banaji, A.; Won, H.; Wong, W.; Berger, M.; de Stanchina, E.; Barratt, D.G.; Cosulich, S.; Klinowska, T.; Rosen, N.; Shokat, K.M. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016, 534, 272-276.
[15] Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394-424.
[16] Yuan, L.Y.; Qin, X.M.; Li, L.; Zhou, J.T.; Zhou, M.; Li, X.X.; Xu, Y.; Cheng, L.; Xing, H. Overexpression of LINC00037 represses cervical cancer progression by activating mTOR signaling pathway. J. Cell Physiol. 2019, 234, 13353-13360.
[17] Klempner, S.J.; Myers, A.P.; Cantley, L.C. What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov. 2013, 3, 1345-1354.
[18] Xia, J.; Jin, H.W.; Liu, Z.M.; Zhang, L.R.; Wang, X.S. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs. J. Chem. Inf. Model. 2014, 54, 1433-1450.
[19] Chiem, K.; Jani, S.; Fuentes, B.; Lin, D.L.; Rasche, M.E.; Tolmasky, M.E. Identification of an inhibitor of the aminoglycoside 6'-N-acetyltransferase type ib [AAC(6')-ib] by glide molecular docking. Medchemcomm. 2016, 7, 184-189.
[20] Xia, J.; Hu, H.B.; Xue, W.J.; Wang, X.S.; Wu, S. The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay. J. Enzyme. Inhib. Med. Chem. 2018, 33, 525-535.
[21] Sattarinezhad, E.; Bordbar, A.K.; Fani, N. Virtual screening of Piperine analogs as Survivin inhibitors and their molecular interaction analysis by using consensus docking, MD simulation, MMPB/GBSA and alanine scanning techniques. J. Biomol. Struct. Dyn. 2017, 35, 1824-1832.
[22] Śledź, P.; Caflisch, A. Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struct. Biol. 2018, 48, 93-102.
[23] Ward, R.A.; Bethel, P.; Cook, C.; Davies, E.; Debreczeni, J.E.; Fairley, G.; Feron, L.; Flemington, V.; Graham, M.A.; Greenwood, R.; Griffin, N.; Hanson, L.; Hopcroft, P.; Howard, T.D.; Hudson, J.; James, M.; Jones, C.D.; Jones, C.R.; Lamont, S.; Lewis, R.; Lindsay, N.; Roberts, K.; Simpson, I.; St-Gallay, S.; Swallow, S.; Tang, J.; Tonge, M.; Wang, Z.H.; Zhai, B.C. Structure-guided discovery of potent and selective inhibitors of ERK1/2 from a modestly active and promiscuous chemical start point. J. Med. Chem. 2017, 60, 3438-3450.
[24] Aliwaini, S.; Awadallah, A.M.; Morjan, R.Y.; Ghunaim, M.; Alqaddi, H.; Abuhamad, A.Y.; Awadallah, E.A.; Abughefra, Y.M. Novel imidazo[1,2-a]pyridine inhibits AKT/mTOR pathway and induces cell cycle arrest and apoptosis in melanoma and cervical cancer cells. Oncol. Lett. 2019, 18, 830-837.
[25] Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112-1116.
[26] Wang, X.M.; Xin, M.H.; Xu, J.; Kang, B.R.; Li, Y.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activities evaluation of m-(4-morpholinoquinazolin-2-yl)benzamides in vitro and in vivo. Eur. J. Med. Chem. 2015, 96, 382-395. |