[1] Gaucher, G.; Satturwar, P.; Jones, M.C.; Furtos, A.; Leroux, J.C. Polymeric micelles for oral drug delivery. Eur. J. Pharm. Biopharm. 2010, 76, 147–158.
[2] Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 2012, 1–10.
[3] Poovi, G.; Damodharan, N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Futur. J. Pharm. Sci. 2018, 4, 191–205.
[4] Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B. 2015, 5, 442–453.
[5] Reddy, M.S.; Gurram, A.K.; Deshpande, P.B.; Kar, S.S.; Nayak, U.; Udupa, N. Role of components in the formation of self-microemulsifying drug delivery systems. Indian J. Pharm. Sci. 2015, 77, 249.
[6] Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621.
[7] Qu, X.Y.; Zou, Y.; He, C.Y.; Zhou, Y.H.; Jin, Y.; Deng, Y.Q.; Wang, Z.Q.; Li, X.R.; Zhou, Y.X.; Liu, Y. Improved intestinal absorption of paclitaxel by mixed micelles self-assembled from vitamin E succinate-based amphiphilic polymers and their transcellular transport mechanism and intracellular trafficking routes. Drug Deliv. 2018, 25, 210–225.
[8] Zhang, Y.H.; Li, X.R.; Zhou, Y.X.; Wang, X.N.; Fan, Y.T.; Huang, Y.Q.; Liu, Y. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine A. Nanoscale Res. Lett. 2010, 5, 917–925.
[9] Plapied, L.; Duhem, N.; des Rieux, A.; Préat, V. Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci. 2011, 16, 228–237.
[10] Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract. 2018, 136, 52–77.
[11] Adibi, S.A. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology. 1997, 113, 332–340.[
[12] Incecayir, T.; Sun, J.; Tsume, Y.; Xu, H.; Gose, T.; Nakanishi, T.; Tamai, I.; Hilfinger, J.; Lipka, E.; Amidon, G.L. Carrier-mediated prodrug uptake to improve the oral bioavailability of polar drugs: an application to an oseltamivir analogue. J. Pharm. Sci. 2016, 105, 925–934.
[13] Wang, H.P.; Wang, C.L. Biological transporters as targets for new drug design. J. Exp. Clin. Med. 2009, 1, 31–38.
[14] Beauchamp, L.M.; Orr, G.F.; de Miranda, P.; Bumette, T.; Krenitsky, T.A. Amino acid ester prodrugs of acyclovir. Antivir. Chem. Chemother. 1992, 3, 157–164.
[15] Bolger, M.B.; Haworth, I.S.; Yeung, A.K.; Ann, D.; von Grafenstein, H.; Hamm-Alvarez, S.; Okamoto, C.T.; Kim, K.J.; Basu, S.K.; Wu, S.; Lee, V.H. Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. J. Pharm. Sci. 1998, 87, 1286–1291.
[16] Katayama, K.; Nakagawa, K.; Takeda, H.; Matsuda, A.; Ichikawa, S. Total synthesis of sandramycin and its analogues via a multicomponent assemblage. Org. Lett. 2014, 16, 428–431.
[17] Zou, Y.; Zhou, Y.H.; Jin, Y.; He, C.Y.; Deng, Y.Q.; Han, S.D.; Zhou, C.H.; Li, X.R.; Zhou, Y.X.; Liu, Y. Synergistically enhanced antimetastasis effects by honokiol-loaded ph-sensitive polymer-doxorubicin conjugate micelles. ACS Appl Mater Interfaces. 2018, 10, 18585–18600.
[18] Heyder, R.S.; Zhong, Q.; Bazito, R.C.; da Rocha, S.R.P. Cellular internalization and transport of biodegradable polyester dendrimers on a model of the pulmonary epithelium and their formulation in pressurized metered-dose inhalers. Int. J. Pharm. 2017, 520, 181–194.
[19] Sanchez-Sanchez, A.; Rivilla, I.; Agirre, M.; Basterretxea, A.; Etxeberria, A.; Veloso, A.; Sardon, H.; Mecerreyes, D.; Cossío, F.P. Enantioselective ring-opening polymerization of rac-lactide dictated by densely substituted amino acids. J. Am. Chem. Soc. 2017, 139, 4805–4814.
[20] Syu, W.J.; Yu, H.P.; Hsu, C.Y.; Rajan, Y.C.; Hsu, Y.H.; Chang, Y.C.; Hsieh, W.Y.; Wang, C.H.; Lai, P.S. Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in a KB xenografted animal model. Small. 2012, 8, 2060–2069.
[21] Gao, Y.J.; Zhang, C.; Zhou, Y.X.; Li, J.W.; Zhao, L.; Li, Y.S.; Liu, Y.; Li, X.R. Endosomal ph-responsive polymer-based dual-ligand-modified micellar nanoparticles for tumor targeted delivery and facilitated intracellular release of paclitaxel. Pharm. Res. 2015, 32, 2649–2662.
[22] Wang, D.S.; Zhou, Y.X.; Li, X.R.; Qu, X.Y.; Deng, Y.Q.; Wang, Z.Q.; He, C.Y.; Zou, Y.; Jin, Y.G.; Liu, Y. Mechanisms of ph-sensitivity and cellular internalization of PEOz-b-PLA micelles with varied hydrophilic/hydrophobic ratios and intracellular trafficking routes and fate of the copolymer. ACS Appl Mater Interfaces. 2017, 9, 6916–6930.
[23] Zhu, X.; Wu, J.; Shan, W.; Zhou, Z.; Liu, M.; Huang, Y. Sub-50 nm nanoparticles with biomimetic surfaces to sequentially overcome the mucosal diffusion barrier and the epithelial absorption barrier. Adv. Funct. Mater. 2016, 26, 2728–2738.
[24] Buyse, M.; Berlioz, F.; Guilmeau, S.; Tsocas, A.; Voisin, T.; Péranzi, G.; Merlin, D.; Laburthe, M.; Lewin, M.J.M.; Rozé, C.; Bado, A. PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. J. Clin. Invest. 2001, 108, 1483–1494.
[25] Gleeson, J.P.; Brayden, D.J.; Ryan, S.M. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. Eur. J. Pharm. Biopharm. 2017, 115, 276–284. |