[1] Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med. 1998, 15, 539-553.
[2] International Diabetes Federation. Global diabetes plan 2011-2021. 2012, 7-7. This article can be found online at https://www.idf.org/our-activities/advocacy-awareness/resources-and-tools/129:global-diabetes-plan-2011-2021.html.
[3] Chinese Diabetes Society. China guideline for type 2 diabetes. Chin. J. Diabetes Mellitus. 2014, 6, 447-498.
[4] American Diabetes Association. Standards of medical care in diabetes--2017. Diabetes Care. 2017, 40, S48-S56.
[5] American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care. 2014, 37, S14-S80.
[6] Group UK Prospective Diabetes Study. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998, 352, 854-865.
[7] Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A.W.; Holman, R.R.; Bethel, M.A.; Matthews, D.R. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Eng. J. Med. 2008, 359, 1577-1589.
[8] Evans, J.M.M.; Donnelly, L.A.; Emsliesmith, A.M.; Alessi, D.R.; Morris, AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005, 330, 1304-1305.
[9] Cushman, W.C.; Grimm, R.H.; Cutler, J.A.; Evans, G.W.; Capes, S.; Corson, M.A.; Sadler, L.S.; Alderman, M.H.; Peterson, K.; Bertoni, A.; Basile J.N. Rationale and design for the blood pressure intervention of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. J. Am. Coll. Cardiol. 2007, 99, S44-S55.
[10] Men, P.; Gu, X.C.; Zhai, S.D. A consistency evaluation based on Chinese literatures for generic metformin hydrochloride. Clin. Med. J. 2016, 4, 30-34.
[11] Li, L.L.; Du, L.P.; Zhang, Y.X.; Mei, D. Inter-Changeability between Generic Medicines and Brand-name Medicines. J. Chin. Pharm. Sci. 2015, 50, 178-181.
[12] Sambol, N.C.; Chiang, J.; O'Conner, M.; Liu, C.Y.; Lin, E.T.; Goodman, A.M.; Benet, L.Z.; Karam, J.H. Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J. Clin. Pharmacol. 1996, 36, 1012-1021.
[13] Duong, J.K.; Kumar, S.S.; Kirkpatrick, C.M.; Greenup, L.C.; Arora, M.; Lee, T.C.; Timmins, P.; Graham, G.G.; Furlong, T.J.; Greenfield, J.R. Population pharmacokinetics of metformin in healthy subjects and patients with type 2 diabetes mellitus: simulation of doses according to renal function. Clin. Pharmacokinet. 2013, 52, 373-384.
[14] Meredith, P. Bioequivalence and Other Unresolved Issues in Generic Drug Substitution. Clin. Ther. 2003, 25, 2875-2890.
[15] Hwang, I.K.; Kim, I.Y.; Joo, E.J.; Shin, J.H.; Choi, J.W.; Won, M.H.; Yoon, Y.S.; Seong, J.K. Metformin normalizes type 2 diabetes-induced decrease in cell proliferation and neuroblast differentiation in the rat dentate gyrus. Neurochem. Res. 2010, 645-650.
[16] Metais, C.; Forcheron, F.; Abdallah, P.; Basset, A.; Carmine, P.D.; Bricca, G.; Beylot, M. Adiponectin receptors: expression in Zucker diabetic rats and effects of fenofibrate and metformin. Metabolism. 2008, 57, 946-953.
[17] Atkinson, L.L.; McDonald-Dyck, C.; Benkoczi, C.; Finegood, D.T. Effect of chronic rosiglitazone, metformin and glyburide treatment on beta-cell mass, function and insulin sensitivity in mZDF rats. Diabetes Obes. Metab. 2008, 10, 780-790.
[18] Reaganshaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. Faseb. J. 2008, 22, 659-661.
[19] Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care. 2004, 27, 1487-1495.
[20] Zhou, X.; Rougée, L.R.; Bedwell, D.W.; Cramer, J.W.; Mohutsky, M.A.; Calvert, N.A.; Moulton, R.D.; Cassidy, K.C.; Yumibe, N.P.; Adams, L.A. Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats. Drug Metab. Dispos. 2016, 44, 1184-1192.
[21] Xing, J.F.; Hai, S.; Dong, Y.L.; Chen, S.Y.; Hui, F.; Qian, D. Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces. Acta Pharmaco. Sin. 2011, 32, 655-663.
[22] Wang, Y.; Yang, G.; Guo, C.X.; Pei, Q.; Zhang, R.R.; Huang, L. Plasma Double-peak Phenomenon Following Oral Administration. Chin. J. Clin. Pharmacol. Ther. 2014, 19, 341-345
[23] Lal, J.; Jain, G.K. Effect of centchroman coadministration on the pharmacokinetics of metformin in rats. Indian J. Pharmaco. 2010, 42, 146-149.
[24] Choi, Y.H.; Kim, S.G.; Lee, M.G. Dose-independent pharmacokinetics of metformin in rats: Hepatic and gastrointestinal first-pass effects. J. Pharm. Sci-us. 2006, 95, 2543-2552.
[25] Freisleben, H.J.; Fürstenberger, H.J.; Deisinger, S.; Freisleben, K.B.; Wiernsperger, N.; Zimmer, G. Interaction of glucose and metformin with isolated red cell membrane. Arzneimittel forsch. 1996, 46, 773-778.
[26] Kyung, K.M.; Sook, J.H.; Shin, Y.C.; Hae, K.J.; Jung, J.H.; Kyun, K.T.; Jeong, K.M.; Hee, L.S.; Soo, K.K.; Doo, R.B. The Effect of Glucose Fluctuation on Apoptosis and Function of INS-1 Pancreatic Beta Cells. Korean Diabetes J. 2010, 34, 47-54.
[27] Brownlee, M.; Hirsch, I.B. Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications. JAMA. 2006, 295, 1707-1708.
[28] Cao, Y.; Dai, W.; Liao, F.; Jun, Y.E.; Zhang, R.; Liu, Y.; Wang, Y. The relationship between blood glucose fluctuation and early diabetic nephropathy in type 2 diabetes. Chin. J. Clin. Healthc. 2013, 6, 612-614.
[29] Zhang, X.G.; Zhang, Y.Q.; Zhao, D.K.; Wu, J.X.; Zhao, J.; Jiao, X.M.; Chen, B.; Lv, X.F. Relationship between blood glucose fluctuation and macrovascular endothelial dysfunction in type 2 diabetic patients with coronary heart disease. Eur. Rev. Med. Pharmaco. 2014, 18, 3593-3600
[30] Lawes, C.V.; Bennett, D.A.; Suh, I.; Lam, T.H.; Whitlock, G.; Barzi, F.; Woodward, M. Blood glucose and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care. 2004, 27, 2836-2842.
[31] Wilner, A.N. Therapeutic equivalency of generic antiepileptic drugs: results of a survey. Epilepsy Behav. 2004, 5, 995-998.
[32] Tacca, M.D. Lack of pharmacokinetic bioequivalence between generic and branded amoxicillin formulations. A post-marketing clinical study on healthy volunteers. Br. J. Clin. Pharmacol. 2009, 68, 34-42.
[33] Tacca, M.D.; Pasqualetti, G.; Gori, G.; Pepe, P.; Paolo, A.D.; Lastella, M.; Negri, F.D.; Blandizzi, C. Comparative pharmacokinetic and pharmacodynamic evaluation of branded and generic formulations of meloxicam in healthy male volunteers. Ther. Clin. Risk Manag. 2013, 303-311.
[34] Meredith, P.A. Generic drugs. Therapeutic equivalence. Drug Safety. 1996, 15, 233-242. |