[1] Shi, J.J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer. 2017, 17, 20-37.
[2] Rowland, A.; Dias, M.M.; Wiese, M.D.; Kichenadasse, G.; Mckinnon, R.A.; Karapetis, C.S.; Sorich, M.J. Reply: Comment on ‘Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer’. Br. J. Cancer. 2015, 113, 1635.
[3] Deshpande, P.; Jhaveri, A.; Pattni, B.; Biswas, S.; Torchilin, V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv. 2018, 25, 517-532.
[4] Sharma, R.; Mody, N.; Kushwah, V.; Jain, S.; Vyas, S.P. C-Type lectin receptor(s)-targeted nanoliposomes: an intelligent approach for effective cancer immunotherapy. Nanomedicine (Lond). 2017, 12, 1945-1959.
[5] Zhao, B.J.; Ke, X.Y.; Huang, Y.; Chen, X.M.; Zhao, X.; Zhao, B.X.; Lu W.L.; Lou, J.N.; Zhang, X.; Zhang, Q. The antiangiogenic efficacy of NGR-modified PEG-DSPE micelles containing paclitaxel (NGR-M-PTX) for the treatment of glioma in rats. J. Drug Target. 2011, 19, 382-390.
[6] Luo, L.M.; Huang, Y.; Zhao, B.X.; Zhao, X.; Duan, Y.; Du, R.; Yu, K.F.; Song, P.; Zhao, Y.; Zhang, X.; Zhang, Q. Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. Biomaterials. 2013, 34, 1102-1114.
[7] Huang, D.; Zhang, S.; Zhong, T.; Ren, W.; Yao, X.; Guo, Y.; Duan, X.C.; Yin, Y.F.; Zhang, S.S.; Zhang, X. Multi-targeting NGR-modified liposomes recognizing glioma tumor cells and vasculogenic mimicry for improving anti-glioma therapy. Oncotarget. 2016, 7, 43616-43628.
[8] Zhao, B.X.; Zhao, Y.; Huang, Y.; Luo, L.M.; Song, P.; Wang, X.; Chen, S.; Yu, K.F.; Zhang, X.; Zhang. Q. The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials. 2012, 33, 2508-2520.
[9] Zhao, Y.; Ren, W.; Zhong, T.; Zhang, S.; Huang, D.; Guo, Y.; Yao, X.; Wang, C.; Zhang, W.Q.; Zhang, X.; Zhang, Q. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release. 2016, 222, 56-66.
[10] Zheng, X.C.; Ren, W.; Zhang, S.; Zhong, T.; Duan, X.C.; Yin, Y.F.; Xu, M.Q.; Hao, Y.L.; Li, Z.T.; Li, H.; Liu, M.; Li Z.Y.; Zhang, X. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine. 2018, 13, 1495-1504.
[11] Yu, K.F.; Zhang, W.Q.; Luo, L.M.; Song, P.; Li, D.; Du, R.; Ren, W.; Huang, D.; Lu, W.L.; Zhang, X.; Zhang, Q. The antitumor activity of a doxorubicin loaded, iRGD-modified sterically-stabilized liposome on B16-F10 melanoma cells: in vitro and in vivo evaluation. Int. J. Nanomedicine. 2013, 8, 2473-2485.
[12] Du, R.; Zhong, T.; Zhang, W.Q.; Song, P.; Song, W.D.; Zhao, Y.; Wang, C.; Tang, Y.Q.; Zhang, X.; Zhang, Q. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int. J. Nanomedicine. 2014, 24, 3091-3105.
[13] Wang, C.; Wang, X.; Zhong, T.; Zhao, Y.; Zhang, W.Q.; Ren, W.; Huang, D.; Zhang, S.; Guo, Y.; Yao, X.; Tang, Y.Q.; Zhang, X.; Zhang, Q. The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. Int. J. Nanomedicine. 2015, 10, 2229-2248.
[14] Zhang, W.Q.; Yu, K.F.; Zhong, T.; Luo, L.M.; Du, R.; Ren, W.; Huang, D.; Song, P.; Li, D.; Zhao, Y.; Wang, C.; Zhang, X. Does ligand-receptor mediated competitive effect or penetrating effect of iRGD peptide when co-administration with iRGD-modified SSL? J. Drug Target. 2015, 23, 897-909.
[15] Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009, 16, 510-520.
[16] Ma, L.J.; Chen, Q.B.; Ma, P.P.; Han, M.K.; Xu, Z.G.; Kang, Y.J.; Xiao, B.; Merlin. D. iRGD-functionalized PEGylated nanoparticles for enhanced colon tumor accumulation and targeted drug delivery. Nanomedicine. 2017, 12, 1991-2006.
[17] Zhang, J.; Wang, S.; Deng, Z.T.; Li, L.; Tan, G.H.; Liu, X.; Zheng, H.R.; Yan, F. Ultrasound-Triggered Drug Delivery for Breast Tumor Therapy Through iRGD-Targeted Paclitaxel-Loaded Liposome-Microbubble Complexes. J. Biomed. Nanotechnol. 2018, 14, 1384-1395.
[18] Hu, H.; Wan, J.L.; Huang, X.T.; Tang, Y.X.; Xiao, C.; Xu, H.B.; Yang, X.L.; Li, Z.F. iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale. 2018, 10, 10514-10527.
[19] Yang, Y.Y.; Wang, X.F.; Liao, G.C.; Liu, X.Q.; Chen, Q.L.; Li, H.M.; Lu, L.; Zhao, P.; Yu, Z.Q. iRGD-decorated red shift emissive carbon nanodots for tumor targeting fluorescence imaging. J. Colloid. Interface Sci. 2018, 509, 515-521.
[20] Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics. 2016, 6, 1306.
[21] Unezaki, S.; Maruyama, K.; Takahashi, N.; Koyama, M.; Yuda, T.; Suginaka, A.; Iwatsuru, M. Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm. Res. 1994, 11, 1180-1185.
[22] Koning, G.A.; Eggermont, A.M.; Lindner, L.H.; ten Hagen, T.L. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm. Res. 2010, 27, 1750-1754.
[23] Singh, N.K.; Lee, D.S. In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control. Release. 2014, 193, 214-227.
[24] Needham, D.; Anyarambhatla, G.; Kong, G.; Dewhirst, M.W. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000, 60, 1197-1201.
[25] Landon, C.D.; Park, J.Y.; Needham, D.; Dewhirst, M.W. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J. 2011, 3, 38-64.
[26] Needham, D.; Park, J.Y.; Wright, A.M.; Tong, J. Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition, lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss. 2013, 161, 515-534; discussion 563-589.
[27] Sadeghi, N.; Deckers, R.; Ozbakir, B.; Akthar, S.; Kok, R.J.; Lammers, T.; Storm, G. Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. Int. J. Pharm. 2018, 548, 778-782.
[28] Banno, B.; Ickenstein, L.M.; Chiu, G.N.; Bally, M.B.; Thewalt, J.; Brief, E.; Wasan, E.K. The functional roles of poly (ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J. Pharm. Sci. 2010, 99, 2295-2308.
[29] VanOsdol, J.; Ektate, K.; Ramasamy, S.; Maples, D.; Collins, W.; Malayer, J.; Ranjan, A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J. Control. Release. 2017, 247, 55-63.
[30] Dou, Y.N.; Chaudary, N.; Chang, M.C.; Dunne, M.; Huang, H.; Jaffray, D.A.; Milosevic, M.; Allen, C. Tumor microenvironment determines response to a heat-activated thermosensitive liposome formulation of cisplatin in cervical carcinoma. J. Control. Release. 2017, 262, 182-191.
[31] Wang, Z.Y.; Zhang, H.; Yang, Y.; Xie, X.Y.; Yang, Y.F.; Li, Z.P.; Li, Y.; Gong, W.; Yu, F.L.; Yang, Z.B.; Li, M.Y.; Mei, X.G. Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel. Drug Deliv. 2016, 23, 1222-1231.
[32] Ke, X.Y.; Zhao, B.J.; Zhao, X.; Wang, Y.; Huang, Y.; Chen, X.M.; Zhao, B.X.; Zhao, S.S.; Zhang, X.; Zhang, Q. The therapeutic efficacy of conjugated linoleic acid-paclitaxel on glioma in the rat. Biomaterials. 2010, 31, 5855-5864.
[33] Li, D.; Yang, K.; Li, J.S.; Ke, X.Y.; Duan, Y.; Du, R.; Song, P.; Yu, K.F.; Ren, W.; Huang, D.; Li, X.H.; Hu, X.; Zhang, X.; Zhang, Q. Antitumor efficacy of a novel CLA-PTX microemulsion against brain tumors: in vitro and in vivo findings. Int. J. Nanomedicine. 2012, 7, 6105-6114.
[34] Zhong, T.; Yao, X.; Zhang, S.; Guo, Y.; Duan, X.C.; Ren, W.; Huang, D.; Yin, Y.F.; Zhang, X. A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic. Sci. Rep. 2016, 6, 36614.
[35] Al-Ahmady, Z.S.; Scudamore, C.L.; Kostarelos, K. Triggered doxorubicin release in solid tumors from thermosensitive liposome-peptide hybrids: Critical parameters and therapeutic efficacy. Int. J. Cancer. 2015, 137, 731-743.
[36] De, Smet. M.; Langereis, S.; van den Bosch, S.; Grüll, H. Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J. Control. Release. 2010, 143, 120-127.
[37] Hong, S.S.; Choi, J.Y.; Kim, J.O.; Lee, M.K.; Kim, S.H.; Lim, S.J. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int. J. Nanomedicine. 2016, 11, 4465-4477.
[38] Zhang, S.; Li, Z.T.; Liu, M.; Wang, J.R.; Xu, M.Q.; Li, Z.Y.; Duan, X.C.; Hao, Y.L.; Zheng, X.C.; Li, H.; Feng, Z.H.; Zhang, X. Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells. J. Control Release. 2018 Dec 21. pii: S0168-3659(18)30737-5. doi: 10.1016/j.jconrel.2018.12.034.
[39] Duan, X.C.; Yao, X.; Zhang, S.; Xu, M.Q.; Hao, Y.L.; Li, Z.T.; Zheng, X.C.; Liu, M.; Li, Z.Y.; Li, H.; Wang, J.R.; Feng, Z.H.; Zhang, X. Antitumor activity of the bioreductive prodrug 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) on MDa-MB-231 cells: in vitro and in vivo. Int. J. Nanomedicine. 2019, 14, 195-204.
[40] Deng, Z.T.; Xiao, Y.; Pan, M.; Li, F.; Duan, W.L.; Meng, L.; Liu, X.; Yan, F.; Zheng, H. Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound. J. Control. Release. 2016, 243, 333-341. |