[1] Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7-34.
[2] Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: a view of metastasis. J. Intern. Med. 2013, 274, 113-126.
[3] Harbeck, N.; Gnant, M. Breast cancer. Lancet. 2017, 389, 1134-1150.
[4] Baccelli, I.; Trumpp, A. The evolving concept of cancer and metastasis stem cells. J. Cell Biol. 2012, 198, 281-293.
[5] Lawson, D.A.; Bhakta, N.R.; Kessenbrock, K.; Prummel, K.D.; Ying, Y.; Ken, T.K.; Zhou, A.; Eyob, H.; Balakrishnan, S.; Wang, C.Y.; Yaswen, P.; Goga, A.; Werb, Z. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015, 526, 131-135.
[6] Chang, J.C. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Philadelphia, PA, U.S.). 2016, 95, S20-25.
[7] Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Jeon, H.M.; Kim, M.Y.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer. 2017, 16, 10.
[8] Singh, M.; Yelle, N.; Venugopal, C.; Singh, S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther. 2018, 182, 80-94.
[9] Mani, S.A.; Guo, W.J.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008, 133, 704-715.
[10] Luquin-Piudo, M.R.; Sanz, P. Dopamine receptors, motor responses, and dopaminergic agonists. Neurologist. 2011, 17, S2-8.
[11] Sachlos, E.; Risueño, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J.H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; Levadoux-Martin, M.; Lee, J.B.; Giacomelli, A.O.; Hassell, J.A.; Fischer-Russell, D.; Trus, M.R.; Foley, R.; Leber, B.; Xenocostas, A.; Brown, E.D.; Collins, T.J.; Bhatia, M. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 2012, 149, 1284-1297.
[12] Zhang, C.; Gong, P.; Liu, P.F.; Zhou, N.; Zhou, Y.L.; Wang, Y. Thioridazine elicits potent antitumor effects in colorectal cancer stem cells. Oncol. Rep. 2017, 37, 1168-1174.
[13] Li, J.; Yao, Q.Y.; Xue, J.S.; Wang, L.J.; Yuan, Y.; Tian, X.Y.; Su, H.; Wang, S.Y.; Chen, W.J.; Lu, W.; Zhou, T.Y. Dopamine D2 receptor antagonist sulpiride enhances dexamethasone responses in the treatment of drug-resistant and metastatic breast cancer. Acta Pharmacol. Sin. 2017, 38, 1282-1296.
[14] Wang, S.Y.; Mou, Z.Z.; Ma, Y.H.; Li, J.; Li, J.Y.; Ji, X.W.; Wu, K.H.; Li, L.; Lu, W.; Zhou, T.Y. Dopamine enhances the response of sunitinib in the treatment of drug-resistant breast cancer: Involvement of eradicating cancer stem-like cells. Biochem. Pharmacol. 2015, 95, 98-109.
[15] Yeh, C.T.; Wu, A.T.; Chang, P.M.; Chen, K.Y.; Yang, C.N.; Yang, S.C.; Ho, C.C.; Chen, C.C.; Kuo, Y.L.; Lee, P.Y.; Liu, Y.W.; Yen, C.C.; Hsiao, M.; Lu, P.J.; Lai, J.M.; Wang, L.S.; Wu, C.H.; Chiou, J.F.; Yang, P.C.; Huang, C.Y. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am. J. Respir. Crit. Care Med. 2012, 186, 1180-1188.
[16] Li, Y.M.; Wang, W.; Wang, F.Y.; Wu, Q.S.; Li, W.; Zhong, X.L.; Tian, K.; Zeng, T.; Gao, L.; Liu, Y.; Li, S.; Jiang, X.B.; Du, G.W.; Zhou, Y. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J. Mol. Cell Biol. 2017, 9, 302-314.
[17] Lindsley, C.W.; Hopkins, C.R. Return of d4 dopamine receptor antagonists in drug discovery. J. Med. Chem. 2017, 60, 7233-7243.
[18] Hao, F.R.; Wang, S.Y.; Zhu, X.; Xue, J.S.; Li, J.Y.; Wang, L.J.; Li, J.; Lu, W.; Zhou, T.Y. Pharmacokinetic-pharmacodynamic modeling of the anti-tumor effect of sunitinib combined with dopamine in the human non-small cell lung cancer xenograft. Pharm. Res. 2017, 34, 408-418.
[19] Ma, Y.H.; Wang, S.Y.; Ren, Y.P.; Li, J.; Guo, T.J.; Lu, W.; Zhou, T.Y. Antitumor effect of axitinib combined with dopamine and PK-PD modeling in the treatment of human breast cancer xenograft. Acta Pharmacol. Sin. 2019, 40, 243-256.
[20] Minami, K.; Liu, S.Z.; Liu, Y.; Chen, A.; Wan, Q.Q.; Na, S.; Li, B.Y.; Matsuura, N.; Koizumi, M.; Yin, Y.K.; Gan, L.Y.; Xu, A.H.; Li, J.L.; Nakshatri, H.; Yokota, H. Inhibitory effects of dopamine receptor d1 agonist on mammary tumor and bone metastasis. Sci. Rep. 2017, 7, 45686.
[21] Dasta, J.F.; Kirby, M.G. Pharmacology and therapeutic use of low-dose dopamine. Pharmacotherapy. 1986, 6, 304-310.
[22] Holcslaw, T.L.; Beck, T.R. Clinical experience with intravenous fenoldopam. Am. J. Hypertens. 1990, 3, 120S-125S.
[23] Hyttel, J. SCH 23390 - the first selective dopamine D-1 antagonist. Eur. J. Pharmacol. 1983, 91, 153-154.
[24] Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112-1116.
[25] Li, B.; Espósito, B.P.; Wang, S.H.; Zhang, J.; Xu, M.; Zhang, S.P.; Zhang, Z.H.; Liu, S.J. Desferrioxamine-caffeine shows improved efficacy in chelating iron and depleting cancer stem cells. J. Trace Elem. Med. Biol. 2019, 52, 232-238.
[26] Bhatt-Mehta, V.; Nahata, M.C. Dopamine and dobutamine in pediatric therapy. Pharmacotherapy. 1989, 9, 303-314.
[27] Alexander, C.S.; Sako, Y.; Mikulic, E. Pedal gangrene associated with the use of dopamine. N. Engl. J. Med. 1975, 293, 591.
[28] Julka, N.K.; Nora, J.R. Letter: Gangrene aggravation after use of dopamine. JAMA. 1976, 235, 2812-2813.
[29] Chen, J.L.; O'Shea, M. Extravasation injury associated with low-dose dopamine. Ann. Pharmacother. 1998, 32, 545-548.
[30] Li, M.Y.; Fang, H.; Xia, L. Pharmacophore-based design, synthesis, biological evaluation, and 3D-QSAR studies of aryl-piperazines as α1-adrenoceptor antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 3216-3219.
[31] Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315-2319.
[32] Wang, N.N.; Wang, L.H.; Li, Y.; Fu, S.Y.; Xue, X.; Jia, L.N.; Yuan, X.Z.; Wang, Y.T.; Tang, X.; Yang, J.Y.; Wu, C.F. Targeting ALDH2 with disulfiram/copper reverses the resistance of cancer cells to microtubule inhibitors. Exp. Cell Res. 2018, 362, 72-82.
[33] Rahn, S.; Zimmermann, V.; Viol, F.; Knaack, H.; Stemmer, K.; Peters, L.; Lenk, L.; Ungefroren, H.; Saur, D.; Schäfer, H.; Helm, O.; Sebens, S. Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett. 2018, 415, 129-150.
[34] Wu, X.B.; Liu, Y.; Wang, G.H.; Xu, X.; Cai, Y.; Wang, H.Y.; Li, Y.Q.; Meng, H.F.; Dai, F.; Jin, J.D. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-κB activation. Sci. Rep. 2016, 6, 21420.
[35] Hsieh, T.H.; Hsu, C.Y.; Tsai, C.F.; Chiu, C.C.; Liang, S.S.; Wang, T.N.; Kuo, P.L.; Long, C.Y.; Tsai, E.M. A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting β-catenin/LEF-1 signaling. Sci. Rep. 2016, 6, 19156.
[36] Wang, Y.F.; Shi, J.; Chai, K.Q.; Ying, X.H.; Zhou, B.P. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets. 2013, 13, 963-972.
[37] Gheldof, A.; Berx, G. Cadherins and epithelial-to-mesenchymal transition. Prog. Mol. Biol. Transl. Sci. 2013, 116, 317-336.
[38] Prieto-García, E.; Díaz-García, C.V.; García-Ruiz, I.; Agulló-Ortuño, M.T. Epithelial-to-mesenchymal transition in tumor progression. Med. Oncol. 2017, 34, 122.
[39] Scully, O.J.; Bay, B.H.; Yip, G.; Yu, Y.N. Breast cancer metastasis. Cancer Genomics Proteomics. 2012, 9, 311-320. |