[1] World Health Organisation (WHO), Fact sheet on antibiotic resistance, 2018, https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
[2] Vargas-Casanova, Y.; Rodríguez-Mayor, A.V.; Cardenas, K.J.; Leal-Castro, A.L.; Muñoz-Molina, L.C.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv. 2019, 9, 7239-7245.
[3] Zhou, C.C.; Zhou, X.Y.; Su, X.K. Noncytotoxic poly-caprolactone-polyethyleneglycol-ε-poly(l-lysine) triblock copolymer synthesized and self-assembled as an antibacterial drug carrier. RSC Adv. 2017, 7, 39718-39725.
[4] Ganley, J.G.; Carr, G.; Ioerger, T.R.; Sacchettini, J.C.; Clardy, J.; Derbyshire, E.R. Discovery of antimicrobial lipodepsipeptides produced by a serratia sp. within mosquito microbiomes. ChemBioChem. 2018, 19, 1590-1594.
[5] Zhang, L.J.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2016, 26, R14-R19.
[6] Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Synthesis of some new pyrimido[2', 1': 2, 3]thiazolo[4, 5-B]quinoxaline derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2010, 45, 1976-1981.
[7] El-Tombary, A.A.; El-Hawash, S.A. Synthesis, antioxidant, anticancer and antiviral activities of novel quinoxaline hydrazone derivatives and their acyclic C-nucleosides. Med. Chem. 2014, 10, 521-532.
[8] Jonet, A.; Guillon, J.; Mullie, C.; Cohen, A.; Bentzinger, G.; Schneider, J.; Taudon, N.; Hutter, S.; Azas, N.; Moreau, S.; Savrimoutou, S.; Agnamey, P.; Dassonville-Klimpt, A.; Sonnet, P. Synthesis and Antimalarial Activity of New Enantiopure Aminoalcoholpyrrolo[1, 2-a]quinoxalines. Med. Chem. 2018, 14, 293-303.
[9] Prasad, B.; Shiva Kumar, K.; Vijaya Babu, P.; Anusha, K.; Rambabu, D.; Kandale, A.; Vanaja, G.R.; Kalle, A.M.; Pal, M. AlCl3 induced C-N bond formation followed by Pd/C-Cu mediated coupling-cyclization strategy: synthesis of pyrrolo[2, 3-b]quinoxalines as anticancer agents. Tetrahedron Lett. 2012, 53, 6059-6066.
[10] Farrag, A.A.S.; Ammar, Y.A.; El-Sehemi, A.A.G.; Thabet, H.K.; Hassan, N.A.A.; Samy, A.K. Synthesis, and pharmacological screening of novel sulfamoylphenylcar-bamoylquinoxaline derivatives as anti-inflammatory, analgesic and antitumour agents. J. Chem. Res. 2011, 35, 163-166.
[11] Kumar, K.S.; Rambabu, D.; Sandra, S.; Kapavarapu, R.; Krishna, G.R.; Basaveswara Rao, M.V.; Chatti, K.; Reddy, C.M.; Misra, P.; Pal, M. AlCl3 induced (hetero)arylation of 2, 3-dichloroquinoxaline: a one-pot synthesis of mono/disubstituted quinoxalines as potential antitubercular agents. Bioorg. Med. Chem. 2012, 20, 1711-1722.
[12] Ramalingam, P.; Ganapaty, S.; Rao, C.h.B. In vitro antitubercular and antimicrobial activities of 1-substituted quinoxaline-2, 3(1H, 4H)-diones. Bioorg. Med. Chem. Lett. 2010, 20, 406-408.
[13] Al-Marhabi, A.R.; Abbas, H.A.; Ammar, Y.A. Synthesis, characterization and biological evaluation of some quinoxaline derivatives: A promising and potent new class of antitumor and antimicrobial agents. Molecules 2015, 20, 19805-19822.
[14] Clinical Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard-Second Edition: CLSI Document M38-A2. CLSI, Wayne, PA, USA, 2008, 35.
[15] Olatunde S,O. Synthesis of 4-aminoantipyrine Schiff bases and their antimicrobial activities. J. Chin. Pharm. Sci. 2018, 27, 753-766.
[16] Alo, B. I.; Ewedemi, R.; Familoni, O. B. Polycyclic nitrogen compounds. Part 6, Synthesis of new benzo-substituted angular tricyclic quinoxalinones. Bull. Chem. Soc. Nig. 1987, 12, 1-10.
[17] Schlosser, M.; Ruzziconi, R. Nucleophilic substitutions of nitroarenes and pyridines: new insight and new applications. Synthesis. 2010, 2010, 2111-2123.
[18] Sowole, M.A.; Adebisi, A.B.; Olasupo, I.A.; Izunobi, J.U.; Familoni, O.B. Microwave-Assisted Solvent-Free Arylation of Amino acids with Halogenobenzenes. J. Chem. Soc. Nigeria. 2018, 43, 345-352.
[19] Mei, L.; Hu, J.; Cao, X.D.; Wang, F.F.; Zheng, C.; Tao, Y.T.; Zhang, X.W.; Huang, W. The inductive-effect of electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: tunable emission from tetra- to penta-carbazole in solution processed blue OLEDs. Chem. Commun. (Camb). 2015, 51, 13024-13027.
[20] Kayaoglu, G.; Ørstavik, D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit. Rev. Oral Biol. Med. 2004, 15, 308-320.
[21] Akanbi, O.E.; Njom, H.A.; Fri, J.; Otigbu, A.C.; Clarke, A.M. Antimicrobial susceptibility of staphylococcus aureus isolated from recreational Waters and beach sand in Eastern cape province of South Africa. Int. J. Environ. Res. Public. Health. 2017, 14, E1001.
[22] Nataro, J.P.; Steiner, T.; Guerrant, R.L. Enteroaggregative escherichia coli. Emerg. Infect. Dis. 1998, 4, 251-261.
[23] Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5-16.
[24] Fonkui, T.Y; Ikhile, M.I.; Muganza, F.M.; Fotsing, M.C.D.; Siwe-Noundou, X.; Krause, R.W.M.; Arderne, C.; Ndinteh, D.T.; Njobeh, P.B. Synthesis, characterization and biological applications of novel Schiff bases of 2-(Trifluoromethoxy) aniline. J. Chin. Pharm. Sci. 2018, 27, 307-323. |