中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (1): 1-13.DOI: 10.5246/jcps.2025.01.001
• 【综述】 • 下一篇
郭亮荣1,2,3,4, 刘国月1,2,3,4, 孙巨1,2,3,4, 位灯国1,2,3,4,*()
收稿日期:
2024-10-27
修回日期:
2024-11-05
接受日期:
2024-12-23
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
位灯国
Liangrong Guo1,2,3,4, Guoyue Liu1,2,3,4, Ju Sun1,2,3,4, Dengguo Wei1,2,3,4,*()
Received:
2024-10-27
Revised:
2024-11-05
Accepted:
2024-12-23
Online:
2025-02-20
Published:
2025-02-20
Contact:
Dengguo Wei
Supported by:
摘要:
单股正链RNA病毒种类繁多, 对人类和动物健康以及农业经济生产具有重大影响。病毒的5′和3′非翻译区(UTRs)在翻译起始与调控、RNA合成、病毒组装及毒力等方面发挥着关键作用。本文介绍了一些具有代表性的正义单链RNA病毒种类的非翻译区, 并探讨了它们在疫苗研究中的前景以及一些现存问题。
Supporting:
郭亮荣, 刘国月, 孙巨, 位灯国. 单股正链RNA (+ssRNA)病毒非编码区研究进展[J]. 中国药学(英文版), 2025, 34(1): 1-13.
Liangrong Guo, Guoyue Liu, Ju Sun, Dengguo Wei. Research progress on the non-coding region of single-stranded positive-sense RNA (+ssRNA) viruses[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(1): 1-13.
[1] |
Thivierge, K.; Nicaise, V.; Dufresne, P.J.; Cotton, S.; Laliberté, J.F.; Le Gall, O.; Fortin, M.G. Plant virus RNAs. coordinated recruitment of conserved host functions by (+) ssRNA viruses during early infection events. Plant Physiol. 2005, 138, 1822–1827.
|
[2] |
Eruera, A.R.; McSweeney, A.M.; McKenzie-Goldsmith, G.M.; Ward, V.K. Protein nucleotidylylation in +ssRNA viruses. Viruses. 2021, 13, 1549.
|
[3] |
Liu, Y.; Wimmer, E.; Paul, A.V. Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim. Biophys. Acta. 2009, 1789, 495–517.
|
[4] |
Slonchak, A.; Wang, X.H.; Aguado, J.; Sng, J.D.J.; Chaggar, H.; Freney, M.E.; Yan, K.X.; Torres, F.J.; Amarilla, A.A.; Balea, R.; Setoh, Y.X.; Peng, N.; Watterson, D.; Wolvetang, E.; Suhrbier, A.; Khromykh, A.A. Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis. Sci. Adv. 2022, 8, eadd8095.
|
[5] |
Zhao, H.X.; Chen, M.S.; Pettersson, U. Identification of adenovirus-encoded small RNAs by deep RNA sequencing. Virology. 2013, 442, 148–155.
|
[6] |
Bailey, D.; Karakasiliotis, I.; Vashist, S.; Chung, L.M.W.; Rees, J.; McFadden, N.; Benson, A.; Yarovinsky, F.; Simmonds, P.; Goodfellow, I. Functional analysis of RNA structures present at the 3′ extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. J. Virol. 2010, 84, 2859–2870.
|
[7] |
Borah, S.; Darricarrère, N.; Darnell, A.; Myoung, J.; Steitz, J.A. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog. 2011, 7, e1002300.
|
[8] |
Liu, Y.Z.; Zhang, Y.; Wang, M.S.; Cheng, A.C.; Yang, Q.; Wu, Y.; Jia, R.Y.; Liu, M.F.; Zhu, D.K.; Chen, S.; Zhang, S.Q.; Zhao, X.X.; Huang, J.; Mao, S.; Ou, X.M.; Gao, Q.; Wang, Y.; Xu, Z.W.; Chen, Z.L.; Zhu, L.; Luo, Q.H.; Liu, Y.Y.; Yu, Y.L.; Zhang, L.; Tian, B.; Pan, L.C.; Chen, X.Y. Structures and functions of the 3′ untranslated regions of positive-sense single-stranded RNA viruses infecting humans and animals. Front. Cell Infect. Microbiol. 2020, 10, 453.
|
[9] |
Bassett, M.; Salemi, M.; Rife Magalis, B. Lessons learned and yet-to-be learned on the importance of RNA structure in SARS-CoV-2 replication. Microbiol. Mol. Biol. Rev. 2022, 86, e0005721.
|
[10] |
Tidu, A.; Janvier, A.; Schaeffer, L.; Sosnowski, P.; Kuhn, L.; Hammann, P.; Westhof, E.; Eriani, G.; Martin, F. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA. 2020, 27, 253–264.
|
[11] |
Zhang, X.; Liao, C.L.; Lai, M.M. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. J. Virol. 1994, 68, 4738–4746.
|
[12] |
Yang, D.; Leibowitz, J.L. The structure and functions of coronavirus genomic 3’ and 5’ ends. Virus Res. 2015, 206, 120–133.
|
[13] |
Yang, D.; Liu, P.H.; Giedroc, D.P.; Leibowitz, J. Mouse hepatitis virus stem-loop 4 functions as a spacer element required to drive subgenomic RNA synthesis. J. Virol. 2011, 85, 9199–9209.
|
[14] |
Manfredonia, I.; Nithin, C.; Ponce-Salvatierra, A.; Ghosh, P.; Wirecki, T.K.; Marinus, T.; Ogando, N.S.; Snijder, E.J.; van Hemert, M.J.; Bujnicki, J.M.; Incarnato, D. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 2020, 48, 12436–12452.
|
[15] |
Gautam, R.; Mishra, S.; Milhotra, A.; Nagpal, R.; Mohan, M.; Singhal, A.; Kumari, P. Challenges with mosquito-borne viral diseases: outbreak of the monsters. Curr. Top. Med. Chem. 2017, 17, 2199–2214.
|
[16] |
Huang, Z.W.; Zhang, Y.X.; Li, H.Y.; Zhu, J.J.; Song, W.C.; Chen, K.D.; Zhang, Y.J.; Lou, Y.L. Vaccine development for mosquito-borne viral diseases. Front. Immunol. 2023, 14, 1161149.
|
[17] |
Brinton, M.A.; Basu, M. Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res. 2015, 206, 108–119.
|
[18] |
Yu, L.; Nomaguchi, M.; Padmanabhan, R.; Markoff, L. Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology. 2008, 374, 170–185.
|
[19] |
Lodeiro, M.F.; Filomatori, C.V.; Gamarnik, A.V. Structural and functional studies of the promoter element for dengue virus RNA replication. J. Virol. 2009, 83, 993–1008.
|
[20] |
Wengler, G.; Wengler, G.; Gross, H.J. Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses. Virology. 1978, 89, 423–437.
|
[21] |
Cleaves, G.R.; Dubin, D.T. Methylation status of intracellular dengue type 2 40 S RNA. Virology. 1979, 96, 159–165.
|
[22] |
Filomatori, C.V.; Lodeiro, M.F.; Alvarez, D.E.; Samsa, M.M.; Pietrasanta, L.; Gamarnik, A.V. A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006, 20, 2238–2249.
|
[23] |
Nazneen, F.; Thompson, E.A.; Blackwell, C.; Bai, J.S.; Huang, F.Q.; Bai, F.W. An effective live-attenuated Zika vaccine candidate with a modified 5′ untranslated region. NPJ Vaccines. 2023, 8, 50.
|
[24] |
Wang, C.; Sarnow, P.; Siddiqui, A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Virol. 1993, 67, 3338–3344.
|
[25] |
Honda, M.; Beard, M.R.; Ping, L.H.; Lemon, S.M. A phylogenetically conserved stem-loop structure at the 5′ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J. Virol. 1999, 73, 1165–1174.
|
[26] |
Tsukiyama-Kohara, K.; Iizuka, N.; Kohara, M.; Nomoto, A. Internal ribosome entry site within hepatitis C virus RNA. J. Virol. 1992, 66, 1476–1483.
|
[27] |
Friebe, P.; Lohmann, V.; Krieger, N.; Bartenschlager, R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 2001, 75, 12047–12057.
|
[28] |
Otto, G.A.; Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell. 2004, 119, 369–380.
|
[29] |
Khaliq, S.; Jahan, S.; Pervaiz, A.; Ali Ashfaq, U.; Hassan, S. Down-regulation of IRES containing 5′ UTR of HCV genotype 3a using siRNAs. Virol. J. 2011, 8, 221.
|
[30] |
Mason, P.W.; Grubman, M.J.; Baxt, B. Molecular basis of pathogenesis of FMDV. Virus Res. 2003, 91, 9–32.
|
[31] |
Pilipenko, E.V.; Blinov, V.M.; Chernov, B.K.; Dmitrieva, T.M.; Agol, V.I. Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 1989, 17, 5701–5711.
|
[32] |
Zhu, Z.X.; Yang, F.; Cao, W.J.; Liu, H.N.; Zhang, K.S.; Tian, H.; Dang, W.; He, J.J.; Guo, J.H.; Liu, X.T.; Zheng, H.X. The pseudoknot region of the 5′ untranslated region is a determinant of viral tropism and virulence of foot-and-mouth disease virus. J. Virol. 2019, 93, e02039-18.
|
[33] |
Martínez-Salas, E. The impact of RNA structure on picornavirus IRES activity. Trends Microbiol. 2008, 16, 230–237.
|
[34] |
Simmonds, P.; Karakasiliotis, I.; Bailey, D.; Chaudhry, Y.; Evans, D.J.; Goodfellow, I.G. Bioinformatic and functional analysis of RNA secondary structure elements among different Genera of human and animal caliciviruses. Nucleic Acids Res. 2008, 36, 2530–2546.
|
[35] |
Karst, S.M.; Wobus, C.E.; Lay, M.; Davidson, J.; Virgin, H.W. 4th. STAT1-dependent innate immunity to a Norwalk-like virus. Science. 2003, 299, 1575–1578.
|
[36] |
Karakasiliotis, I.; Vashist, S.; Bailey, D.; Abente, E.J.; Green, K.Y.; Roberts, L.O.; Sosnovtsev, S.V.; Goodfellow, I.G. Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One. 2010, 5, e9562.
|
[37] |
Vashist, S.; Urena, L.; Chaudhry, Y.; Goodfellow, I. Identification of RNA-protein interaction networks involved in the norovirus life cycle. J. Virol. 2012, 86, 11977–11990.
|
[38] |
Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 2011, 1, a006841.
|
[39] |
Alexiev, I.; Mavian, C.; Paisie, T.; Ciccozzi, M.; Dimitrova, R.; Gancheva, A.; Kostadinova, A.; Seguin-Devaux, C.; Salemi, M. Analysis of the origin and dissemination of HIV-1 subtype C in Bulgaria. Viruses. 2022, 14, 263.
|
[40] |
Umunnakwe, C.N.; Duchon, A.; Nikolaitchik, O.A.; Rahman, S.A.; Liu, Y.; Chen, J.B.; Tai, S.; Pathak, V.K.; Hu, W.S. Specific guanosines in the HIV-2 leader RNA are essential for efficient viral genome packaging. J. Mol. Biol. 2021, 433, 166718.
|
[41] |
Jonard, G.; Richards, K.; Mohier, E.; Gerlinger, P. Nucleotide sequence at the 5′ extremity of tobacco-mosaic-virus RNA. 2. The coding region (nucleotides 69-236). Eur. J. Biochem. 1978, 84, 521–531.
|
[42] |
Gallie, D.R.; Sleat, D.E.; Watts, J.W.; Turner, P.C.; Wilson, T.M. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 1987, 15, 3257–3273.
|
[43] |
Gallie, D.R. The 5′‐leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res. 2002, 30, 3401–3411.
|
[44] |
Liu, Q.; Wang, H.Y. Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis. Vet. Res. Commun. 2021, 45, 75–86.
|
[45] |
Goebel, S.J.; Miller, T.B.; Bennett, C.J.; Bernard, K.A.; Masters, P.S. A hypervariable region within the 3′ cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. J. Virol. 2007, 81, 1274–1287.
|
[46] |
Zhang, X.W.; Li, Y.H.; Cao, Y.Y.; Wu, Y.; Cheng, G. The role of noncoding RNA in the transmission and pathogenicity of flaviviruses. Viruses. 2024, 16, 242.
|
[47] |
Manzano, M.; Reichert, E.D.; Polo, S.; Falgout, B.; Kasprzak, W.; Shapiro, B.A.; Padmanabhan, R. Identification of cis-acting elements in the 3′-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J. Biol. Chem. 2011, 286, 22521–22534.
|
[48] |
Sztuba-Solinska, J.; Teramoto, T.; Rausch, J.W.; Shapiro, B.A.; Padmanabhan, R.; Le Grice, S.F.J. Structural complexity of dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome. Nucleic Acids Res. 2013, 41, 5075–5089.
|
[49] |
Sakai, M.; Yoshii, K.; Sunden, Y.; Yokozawa, K.; Hirano, M.; Kariwa, H. Variable region of the 3′ UTR is a critical virulence factor in the Far-Eastern subtype of tick-borne encephalitis virus in a mouse model. J. Gen. Virol. 2014, 95, 823–835.
|
[50] |
Mazeaud, C.; Freppel, W.; Chatel-Chaix, L. The multiples fates of the flavivirus RNA genome during pathogenesis. Front. Genet. 2018, 9, 595.
|
[51] |
Xie, X.P.; Zou, J.; Zhang, X.W.; Zhou, Y.Y.; Routh, A.L.; Kang, C.B.; Popov, V.L.; Chen, X.W.; Wang, Q.Y.; Dong, H.P.; Shi, P.Y. Dengue NS2A protein orchestrates virus assembly. Cell Host Microbe. 2019, 26, 606–622.e8.
|
[52] |
Zhang, X.W.; Xie, X.P.; Xia, H.J.; Zou, J.; Huang, L.F.; Popov, V.L.; Chen, X.W.; Shi, P.Y. Zika virus NS2A-mediated virion assembly. mBio. 2019, 10, e02375-19.
|
[53] |
Tanaka, T.; Kato, N.; Cho, M.J.; Shimotohno, K. A novel sequence found at the 3′ terminus of hepatitis C virus genome. Biochem. Biophys. Res. Commun. 1995, 215, 744–749.
|
[54] |
Kolykhalov, A.A.; Feinstone, S.M.; Rice, C.M. Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J. Virol. 1996, 70, 3363–3371.
|
[55] |
Tan, S.L.(Ed.). HCV 5′ and 3′ UTR: When Translation Meets Replication. In: Tan SL, ed. Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk (UK): Horizon Bioscience. 2006. Chapter 2.
|
[56] |
Friebe, P.; Bartenschlager, R. Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J. Virol. 2002, 76, 5326–5338.
|
[57] |
Cantero-Camacho, Á.; Gallego, J. The conserved 3′X terminal domain of hepatitis C virus genomic RNA forms a two-stem structure that promotes viral RNA dimerization. Nucleic Acids Res. 2015, 43, 8529–8539.
|
[58] |
Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of escherichia coli K-12 in-frame, single-gene knockout mutants: the keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008.
|
[59] |
Serrano, P.; Pulido, M.R.; Sáiz, M.; Martínez-Salas, E. The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA-RNA interactions with the 5′ end region. J. Gen. Virol. 2006, 87, 3013–3022.
|
[60] |
López de Quinto, S.; Sáiz, M.; de la Morena, D.; Sobrino, F.; Martínez-Salas, E. IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly(A) sequences. Nucleic Acids Res. 2002, 30, 4398–4405.
|
[61] |
Chang, K.O.; George, D.W.; Patton, J.B.; Green, K.Y.; Sosnovtsev, S.V. Leader of the capsid protein in feline calicivirus promotes replication of Norwalk virus in cell culture. J. Virol. 2008, 82, 9306–9317.
|
[62] |
Zhang, J.L.; Crumpacker, C. HIV UTR, LTR, and epigenetic immunity. Viruses. 2022, 14, 1084.
|
[63] |
Rietveld, K.; Linschooten, K.; Pleij, C.W.; Bosch, L. The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J. 1984, 3, 2613–2619.
|
[64] |
Gallie, D.R.; Walbot, V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev. 1990, 4, 1149–1157.
|
[65] |
Chujo, T.; Ishibashi, K.; Miyashita, S.; Ishikawa, M. Functions of the 5′- and 3′-untranslated regions of tobamovirus RNA. Virus Res. 2015, 206, 82–89.
|
[66] |
Lin, C.H.; Hsieh, F.C.; Chang, Y.C.; Yang, C.Y.; Hsu, H.W.; Yang, C.C.; Tam, H.M.H.; Wu, H.Y. Targeting the conserved coronavirus octamer motif GGAAGAGC is a strategy for the development of coronavirus vaccine. Virol. J. 2023, 20, 267.
|
[67] |
Lu, S.S.; Luo, S.D.; Liu, C.; Li, M.L.; An, X.P.; Li, M.Z.; Hou, J.; Fan, H.H.; Mao, P.Y.; Tong, Y.G.; Song, L.H. Induction of significant neutralizing antibodies against SARS-CoV-2 by a highly attenuated pangolin coronavirus variant with a 104nt deletion at the 3′-UTR. Emerg. Microbes Infect. 2023, 12, 2151383.
|
[68] |
Durbin, A.P.; Karron, R.A.; Sun, W.; Vaughn, D.W.; Reynolds, M.J.; Perreault, J.R.; Thumar, B.; Men, R.; Lai, C.J.; Elkins, W.R.; Chanock, R.M.; Murphy, B.R.; Whitehead, S.S. Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. Am. J. Trop. Med. Hyg. 2001, 65, 405–413.
|
[69] |
Palanichamy Kala, M.; St John, A.L.; Rathore, A.P.S. Dengue: update on clinically relevant therapeutic strategies and vaccines. Curr. Treat. Options Infect. Dis. 2023, 15, 27–52.
|
[70] |
Durbin, A.P. Historical discourse on the development of the live attenuated tetravalent dengue vaccine candidate TV003/TV005. Curr. Opin. Virol. 2020, 43, 79–87.
|
[71] |
Zhang, Q.Y.; Liu, S.Q.; Li, X.D.; Li, J.Q.; Zhang, Y.N.; Deng, C.L.; Zhang, H.L.; Li, X.F.; Fang, C.X.; Yang, F.X.; Zhang, B.; Xu, Y.; Ye, H.Q. Sequence duplication in 3′ UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerg. Microbes Infect. 2022, 11, 123–135.
|
[72] |
Graham, M.E.; Merrick, C.; Akiyama, B.M.; Szucs, M.J.; Leach, S.; Kieft, J.S.; Beckham, J.D. Zika virus dumbbell-1 structure is critical for sfRNA presence and cytopathic effect during infection. mBio. 2023, 14, e0110823.
|
[73] |
Wang, M.M.; Liniger, M.; Muñoz-González, S.; Bohórquez, J.A.; Hinojosa, Y.; Gerber, M.; López-Soria, S.; Rosell, R.; Ruggli, N.; Ganges, L. A polyuridine insertion in the 3′ untranslated region of classical swine fever virus activates immunity and reduces viral virulence in piglets. J. Virol. 2020, 94, e01214-19.
|
[74] |
Biswal, J.K.; Subramaniam, S.; Ranjan, R.; Pattnaik, B. Partial deletion of stem-loop 2 in the 3′ untranslated region of foot-and-mouth disease virus identifies a region that is dispensable for virus replication. Arch. Virol. 2016, 161, 2285–2290.
|
[75] |
Yuan, W.; Zhang, Y.; Wang, J.; Liu, X.M.; Zhao, W.B.; Huang, R. Isolation, identification and genetic analysis of a murine norovirus strain. Chin. J. Virol. 2014, 30, 359–368.
|
[76] |
Zhang, Z.; Zhou, D.M. Discovery and development of antiviral drugs. J. Chin. Pharm. Sci. 2010, 19, 409–422.
|
[77] |
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. The group of Professor Zhenjun Yang has made continuous progress in the research and development of RNA drugs and vaccines. J. Chin. Pharm. Sci. 2021, 30, 934–936.
|
[1] | 沈雨轩, 王天畅, 乔桦, 梁庆, 吕靖茹, 夏青. 金属离子结合和谷氨酰胺供应影响tRNAGln的解码效率[J]. 中国药学(英文版), 2025, 34(1): 28-40. |
[2] | 潘峰, 杨楠, 阮国永, 喻昌燕, 杨建波, 锁冬雪, 秦颖, 刘云. 不同方法提取白芨葡甘聚糖的初步结构特征及对心肌细胞保护作用的比较研究[J]. 中国药学(英文版), 2024, 33(8): 686-704. |
[3] | 李哲, 罗晓岁, Abid Naeem, 李琼, 张尧, 管咏梅, 陈丽华, 朱卫丰, 金正吉, 冯怡, 明良山. 固体制剂物理结构的研究进展[J]. 中国药学(英文版), 2024, 33(10): 877-905. |
[4] | 蔡粟茜, 张可锋, 蔡小华. 岩白菜素: 一种通用易得的生物活性修饰前体[J]. 中国药学(英文版), 2023, 32(5): 333-350. |
[5] | 葛嘉, 陈龙飞, 聂小燕, 陈敬. mRNA疫苗脂质纳米颗粒递送系统的专利发展状况分析[J]. 中国药学(英文版), 2023, 32(2): 112-121. |
[6] | 许凡凡, 巩会平, 刘增强, 吴倩. 左西孟旦在围产期心肌病患者中的临床疗效和安全性[J]. 中国药学(英文版), 2023, 32(2): 138-144. |
[7] | 谭静玲, 陆娟, 郑国华. 酸藤子化学成分的研究[J]. 中国药学(英文版), 2022, 31(4): 264-269. |
[8] | 吴桐, 杜肖, 王建农, 刘良裕, 杨宇珂. 白英中两个新糖苷生物碱[J]. 中国药学(英文版), 2021, 30(6): 518-523. |
[9] | 席彩彩, 徐云玲, 冯康, 吴人照, 骆世洪. 马槟榔种子的化学成分研究[J]. 中国药学(英文版), 2021, 30(11): 924-931. |
[10] | 北京大学药学院 天然药物及仿生药物国家重点实验室. 杨振军教授团队在RNA药物及疫苗研发领域连续取得新进展[J]. 中国药学(英文版), 2021, 30(11): 934-936. |
[11] | 焦佩丽, 李奕言, 吴兴, 王昱曦, 毛蓓蓓, 金宏威, 张礼和, 张亮仁, 刘振明. 基于结构设计的新型mTOR抑制剂的抗宫颈癌活性研究[J]. 中国药学(英文版), 2020, 29(9): 603-616. |
[12] | 徐云玲, 王昱霁, 江石平, 蔡婷婷, 王楠楠, 刘霞, 朱婉萍. 北五味子化学成分的研究[J]. 中国药学(英文版), 2020, 29(7): 480-486. |
[13] | 邓华, 高超, 位灯国, 刘思思. 基于端粒G-四链体结构的三阴性乳腺癌细胞抑制剂的虚拟筛选[J]. 中国药学(英文版), 2020, 29(6): 383-389. |
[14] | 陈静, 程丽, 王富乾, 汪选斌, 张勇慧, 郝新才. 王瓜化学成分研究[J]. 中国药学(英文版), 2020, 29(6): 431-438. |
[15] | 谈春霞, 王亚丽. 麦冬多糖-铁(III)配合物在水溶液和固态条件下的自组装[J]. 中国药学(英文版), 2019, 28(9): 665-672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||