[1] |
Calcaterra, V.; Rossi, V.; Massini, G.; Casini, F.; Zuccotti, G.; Fabiano, V. Probiotics and polycystic ovary syndrome: a perspective for management in adolescents with obesity. Nutrients. 2023, 15, 3144.
|
[2] |
Dasanu, C.A.; Clark, B.A. 3rd, Ichim, T.E.; Alexandrescu, D.T. Polycystic ovary syndrome: focus on platelets and prothrombotic risk. South. Med. J. 2011, 104, 174–178.
|
[3] |
Lima, P.D.A.; Nivet, A.L.; Wang, Q.; Chen, Y.A.; Leader, A.; Cheung, A.; Tzeng, C.R.; Tsang, B.K. Polycystic ovary syndrome: possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages. Biol. Reprod. 2018, 99, 838–852.
|
[4] |
Park, H.R.; Kim, J.H.; Lee, D.H.; Jo, H.G. Cangfu Daotan Decoction for polycystic ovary syndrome: a protocol of systematic review and meta-analysis. Medicine. 2019, 98, e17321.
|
[5] |
Chen, H.Z.; Deng, C.J.; Meng, Z.Y.; Meng, S.X. Effects of TCM on polycystic ovary syndrome and its cellular endocrine mechanism. Front. Endocrinol. 2023, 14, 956772.
|
[6] |
Chen, X.L.; Tao, C.; Wang, J.Y.; He, B.C.; Xu, J.B. Meta-analysis of therapeutic efficacy and effects of integrated traditional Chinese and Western medicine on coagulation and fibrinolysis system in patients with threatened abortion and polycystic ovary syndrome. Am. J. Transl. Res. 2022, 14, 2768–2778.
|
[7] |
Yuan, R.; Tang, P.; Xiao, W.Q. Network pharmacology mechanism of angelica and dodder intervention in polycystic ovary syndrome with kidney deficiency and blood stasis. New Chin. Med. 2020, 3, 83–88.
|
[8] |
Che, X.; Chen, Z.; Liu, M.Q.; Mo, Z.C. Dietary interventions: a promising treatment for polycystic ovary syndrome. Ann. Nutr. Metab. 2021, 77, 313–323.
|
[9] |
Hu, P.; Li, J.; Liu, D.; Yang, H. Mechanism of Cangfu Daotan pill in treating polycystic ovary syndrome based on network pharmacology. J. Hainan Med. Univ. 2021, 7, 26–31.
|
[10] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[11] |
Li, S.; Xu, C.H.; Zhong, L. Clinical observation of Wuji Powder combined with clomiphene citrate in the treatment of polycystic ovary syndrome combined with infertility. J. Nanjing Univ. Chin. Med. 2010, 4, 262–265.
|
[12] |
Liu, Q. The effect of Wuji Powder on glycometabolism and reproductive hormones in patients with polycystic ovary syndrome of phlegm-dampness type. J. Chin. Materia Medica. 2014, 8, 1502–1504.
|
[13] |
He, S.; Ning, Y.; Jiang, S.Y. Molecular mechanism of Rhizoma Coptidis in the treatment of polycystic ovary syndrome hyperandrogenism based on network pharmacology. J. Nanjing Univ. Chin. Med. 2020, 4, 498–503.
|
[14] |
van Loo, G.; Bertrand, M.J.M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 2023, 23, 289–303.
|
[15] |
Wang, Y.X.; Sun, Y.; Qiu, H.Y. Expression and significance of TNF-α in adipose tissue of polycystic ovary syndrome rats. Chin. J. Clin. Obst. Gynecol. 2008, 5, 366–369.
|
[16] |
Ma, J.H.; Shen, W.H.; Zhu, H. Correlation between serum pre-granulocyte protein, interleukin-6 and insulin resistance in polycystic ovary syndrome. Shanghai Med. J. 2016, 1, 6–9.
|
[17] |
Oróstica, L.; Astorga, I.; Plaza-Parrochia, F.; Vera, C.; García, V.; Carvajal, R.; Gabler, F.; Romero, C.; Vega, M. Proinflammatory environment and role of TNF-α in endometrial function of obese women having polycystic ovarian syndrome. Int. J. Obes. (Lond). 2016, 40, 1715–1722.
|
[18] |
Ul Haq Shah, M.Z.; Soni, M.; Shrivastava, V.K.; Mir, M.A.; Muzamil, S. Gallic acid reverses ovarian disturbances in mice with letrozole-induced PCOS via modulating Adipo R1 expression. Toxicol. Rep. 2022, 9, 1938–1949.
|
[19] |
Akin, N.; Le, A.H.; Ha, U.D.T.; Romero, S.; Sanchez, F.; Pham, T.D.; Nguyen, M.H.N.; Anckaert, E.; Ho, T.M.; Smitz, J.; Vuong, L.N. Positive effects of amphiregulin on human oocyte maturation and its molecular drivers in patients with polycystic ovary syndrome. Hum. Reprod. 2021, 37, 30–43.
|
[20] |
Curtis, J.E. The mechanics of ovulation depend on an incredibly soft and sugar-rich extracellular matrix. Biophys. J. 2016, 110, 2566–2567.
|
[21] |
Curry, T.E. Jr, Smith, M.F. Impact of extracellular matrix remodeling on ovulation and the folliculo-luteal transition. Semin. Reprod. Med. 2006, 24, 228–241.
|
[22] |
Zhao, Y.; Zhang, C.M.; Huang, Y.; Yu, Y.; Li, R.; Li, M.; Liu, N.N.; Liu, P.; Qiao, J. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. J. Clin. Endocrinol. Metab. 2015, 100, 201–211.
|
[23] |
Smith, M.F.; McIntush, E.W.; Ricke, W.A.; Kojima, F.N.; Smith, G.W. Regulation of ovarian extracellular matrix remodelling by metalloproteinases and their tissue inhibitors: effects on follicular development, ovulation and luteal function. J. Reprod. Fertil. Suppl. 1999, 54, 367–381.
|
[24] |
Luo, W.; Liu, S.N.; Zhang, W.Q.; Yang, L.; Huang, J.H.; Zhou, S.T.; Feng, Q.L.; Palli, S.R.; Wang, J.; Roth, S.; Li, S. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc. Natl. Acad. Sci. USA 2021, 118, e2104461118.
|
[25] |
Hu, L.M.; Zhang, Y.T.; Chen, L.; Zhou, W.; Wang, Y.; Wen, J. MAPK and ERK polymorphisms are associated with PCOS risk in Chinese women. Oncotarget. 2017, 8, 100261–100268.
|
[26] |
Yamada-Nomoto, K.; Yoshino, O.; Akiyama, I.; Iwase, A.; Ono, Y.; Nakamura, T.; Harada, M.; Nakashima, A.; Shima, T.; Ushijima, A.; Osuga, Y.; Chang, R.J.; Shimasaki, S.; Saito, S. PAI-1 in granulosa cells is suppressed directly by statin and indirectly by suppressing TGF-β and TNF-α in mononuclear cells by insulin-sensitizing drugs. Am. J. Reprod. Immunol. 2017, 78, 10.1111/aji.12669.
|