中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (10): 943-964.DOI: 10.5246/jcps.2024.10.068
邓茜1, 彭紫凝2, 晏蔚田1, 刘念2, 孟凡雨2, 殷建美2, 张昊喆2, 王兴强1,*(), 彭江云1,*()
收稿日期:
2024-02-13
修回日期:
2024-06-13
接受日期:
2024-09-21
出版日期:
2024-10-31
发布日期:
2024-10-31
通讯作者:
王兴强, 彭江云
Qian Deng1, Zining Peng2, Weitian Yan1, Nian Liu2, Fanyu Meng2, Jianmei Yin2, Haozhe Zhang2, Xingqiang Wang1,*(), Jiangyun Peng1,*()
Received:
2024-02-13
Revised:
2024-06-13
Accepted:
2024-09-21
Online:
2024-10-31
Published:
2024-10-31
Contact:
Xingqiang Wang, Jiangyun Peng
Supported by:
摘要:
本研究通过应用网络药理学方法探讨苍术、黄柏治疗类风湿性关节炎的作用及其可能的机制。首先, 从TCMSP数据库中获得药物的化学成分, 通过SwissTargetPrediction数据库预测药物有效成分对应的靶点, 再利用Cytoscape (v 3.8.0)构建药物-成分-靶点网络, 根据网络的度值确定药物的主要活性成分。其次, 通过GEO数据分析结合GeneCards、TTD和PharmGkb数据库的检索, 获取与RA相关的靶标。再将药物靶点与RA相关靶标取交集, 并利用R(v 4.2.2)对交集基因进行GO和KEGG富集分析。同时, 通过String平台构建交集靶点的蛋白互作(PPI)网络, 并利用Cytoscape (v 3.8.0)对药物-成分-靶点-疾病拓扑网络进行可视化, Cytohubba插件识别hub基因。发现苍术、黄柏的35种有效成分及其对应的673个靶点, 其中包含14种主要活性成分。此外, 获得784个与RA相关的靶点。再将药物与疾病相关的靶点取交集后, 发现药物的34种有效成分可以作用于RA相关的126个靶点。通过对药物-成分-疾病-靶点拓扑网络进行分析, 确定了5个hub基因。利用分子对接, 确定这些hub基因与药物的14种主要活性成分的结合亲和力。交集基因的富集分析结果也表明, 苍术、黄柏可以通过多成分、多靶点、多途径发挥抗RA作用。
Supporting: /attached/file/20241106/20241106132914_760.pdf
邓茜, 彭紫凝, 晏蔚田, 刘念, 孟凡雨, 殷建美, 张昊喆, 王兴强, 彭江云. 苍术、黄柏在类风湿关节炎中的治疗机制: 网络药理学与GEO数据的综合分析[J]. 中国药学(英文版), 2024, 33(10): 943-964.
Qian Deng, Zining Peng, Weitian Yan, Nian Liu, Fanyu Meng, Jianmei Yin, Haozhe Zhang, Xingqiang Wang, Jiangyun Peng. Elucidating the therapeutic mechanism of Cang Zhu and Huang Bai in rheumatoid arthritis: a comprehensive analysis integrating network pharmacology and GEO data[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(10): 943-964.
Figure 2. Drug-ingredient-target network. The green octagon represents two herbs, the circle represents 35 ingredients, and the diamond rectangle represents 673 targets.
Figure 3. Volcano plot of DEGs in GSE55235 (A), GSE55457 (B), and GSE77298 (C). The dark goldenrod dots represent significantly up-regulated genes, and the blue dots represent significantly down-regulated genes.
Figure 4. The heatmap of the top 20 up- and down-regulated robust DEGs ranked according to their p. adjust (FDR). Dark goldenrod represents the top 20 up-regulated robust DEGs, and blue represents the top 20 down-regulated robust DEGs. The values in the boxes indicate the robust DEGs log2 FC values.
Figure 6. (A) The Venn diagram of the overlapping targets of CZ-HB and RA. (B) The "drug-ingredient-target-disease" network of CZ-HB against RA. The hexagon represents two drugs, the circle represents 34 active ingredients, the diamond represents one disease, and the triangle represents 126 targets.
Figure 7. (A) The PPI network of overlapping genes of CZ-HB targets and RA-associated targets. (B) The Venn map shows 11 algorithms screened five crossover hub genes.
Figure 8. (A) GO functional enrichment analysis of target genes. In the figure, BP-enriched terms are shown in blue, CC-enriched terms are shown in yellow, and MF-enriched terms are shown in green. The cutoff value for the p. adjust (FDR) was set at 0.05. The p. adjust (FDR) is utilized to rank phrases within a category. (B) Barplot map of GO enrichment analysis.
Figure 9. (A) KEGG functional enrichment analysis of target genes. In the figure, the gray circle on the left is the core target; the earthy yellow circle represents the core target enrichment KEGG signaling pathway; the size of the circle represents the number of core targets contained in the current KEGG signaling pathway. (B) Bubble map of KEGG enrichment analysis.
Figure 10. (A) Binding energies of the 14 active ingredients and the five hub targets. The darker the red indicates, the greater the binding energy of the active ingredients and the hub targets. (B) Molecular docking patterns.
[1] |
Smith, M.H.; Berman, J.R. What is rheumatoid arthritis? JAMA. 2022, 327, 94.
|
[2] |
Frazzei, G.; Musters, A.; de Vries, N.; Tas, S.W.; van Vollenhoven, R.F. Prevention of rheumatoid arthritis: a systematic literature review of preventive strategies in at-risk individuals. Autoimmun. Rev. 2023, 22, 103217.
|
[3] |
Radu, A.F.; Bungau, S.G. Management of rheumatoid arthritis: an overview. Cells. 2021, 10, 2857.
|
[4] |
Rubbert-Roth, A.; Szabó, M.Z.; Kedves, M.; Nagy, G.; Atzeni, F.; Sarzi-Puttini, P. Failure of anti-TNF treatment in patients with rheumatoid arthritis: the pros and cons of the early use of alternative biological agents. Autoimmun. Rev. 2019, 18, 102398.
|
[5] |
Ramiro, S.; Gaujoux-Viala, C.; Nam, J.L.; Smolen, J.S.; Buch, M.; Gossec, L.; van der Heijde, D.; Winthrop, K.; Landewé, R. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 529–535.
|
[6] |
Davis, J.S.; Ferreira, D.; Paige, E.; Gedye, C.; Boyle, M. Infectious complications of biological and small molecule targeted immunomodulatory therapies. Clin. Microbiol. Rev. 2020, 33, e00035–e00019.
|
[7] |
Smolen, J.S.; Landewé, R.; Breedveld, F.C.; Buch, M.; Burmester, G.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gossec, L.; Nam, J.; Ramiro, S.; Winthrop, K.; de Wit, M.; Aletaha, D.; Betteridge, N.; Bijlsma, J.W.J.; Boers, M.; Buttgereit, F.; Combe, B.; Cutolo, M.; Damjanov, N.; Hazes, J.M.W.; Kouloumas, M.; Kvien, T.K.; Mariette, X.; Pavelka, K.; van Riel, P.L.C.M.; Rubbert-Roth, A.; Scholte-Voshaar, M.; Scott, D.L.; Sokka-Isler, T.; Wong, J.B.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 2014, 73, 492–509.
|
[8] |
Smolen, J.S.; Aletaha, D.; Koeller, M.; Weisman, M.H.; Emery, P. New therapies for treatment of rheumatoid arthritis. Lancet. 2007, 370, 1861–1874.
|
[9] |
Bakheet, S.A.; Ansari, M.A.; Nadeem, A.; Attia, S.M.; Alhoshani, A.R.; Gul, G.; Al-Qahtani, Q.H.; Albekairi, N.A.; Ibrahim, K.E.; Ahmad, S.F. CXCR3 antagonist AMG487 suppresses rheumatoid arthritis pathogenesis and progression by shifting the Th17/Treg cell balance. Cell Signal. 2019, 64, 109395.
|
[10] |
Abd-Allah, A.R.A.; Ahmad, S.F.; Alrashidi, I.; Abdel-Hamied, H.E.; Zoheir, K.M.A.; Ashour, A.E.; Bakheet, S.A.; Attia, S.M. Involvement of histamine 4 receptor in the pathogenesis and progression of rheumatoid arthritis. Int. Immunol. 2014, 26, 325–340.
|
[11] |
Gou, K.J.; Zeng, R.; Ren, X.D.; Dou, Q.L.; Yang, Q.B.; Dong, Y.; Qu, Y. Anti-rheumatoid arthritis effects in adjuvant-induced arthritis in rats and molecular docking studies of Polygonum orientale L. extracts. Immunol. Lett. 2018, 201, 59–69.
|
[12] |
Qindeel, M.; Ullah, M.H.; Fakhar-Ud-Din, Ahmed, N.; Rehman, A.U. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J. Control. Release. 2020, 327, 595–615.
|
[13] |
Chen, L.G.; Jan, Y.S.; Tsai, P.W.; Norimoto, H.; Michihara, S.; Murayama, C.; Wang, C.C. Anti-inflammatory and antinociceptive constituents of atractylodes japonica koidzumi. J. Agric. Food Chem. 2016, 64, 2254–2262.
|
[14] |
Fujii, A.; Okuyama, T.; Wakame, K.; Okumura, T.; Ikeya, Y.; Nishizawa, M. Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J. Nat. Med. 2017, 71, 745–756.
|
[15] |
Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111.
|
[16] |
Liu, Z.H.; Sun, X.B. Network pharmacology: new opportunity for the modernization of traditional Chinese medicine. Acta Pharm. Sin. 2012, 47, 696–703.
|
[17] |
Yuan, H.D.; Ma, Q.Q.; Cui, H.Y.; Liu, G.C.; Zhao, X.Y.; Li, W.; Piao, G.C. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017, 22, 1135.
|
[18] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13.
|
[19] |
Barton, H.A.; Pastoor, T.P.; Baetcke, K.; Chambers, J.E.; Diliberto, J.; Doerrer, N.G.; Driver, J.H.; Hastings, C.E.; Iyengar, S.; Krieger, R.; Stahl, B.; Timchalk, C. The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments. Crit. Rev. Toxicol. 2006, 36, 9–35.
|
[20] |
Kim, S.; Chen, J.; Cheng, T.J.; Gindulyte, A.; He, J.; He, S.Q.; Li, Q.L.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395.
|
[21] |
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364.
|
[22] |
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422.
|
[23] |
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
|
[24] |
Quiroga, R.; Villarreal, M.A. Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One. 2016, 11, e0155183.
|
[25] |
Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet. 2016, 388, 2023–2038.
|
[26] |
Wasserman, A.M. Diagnosis and management of rheumatoid arthritis. Am. Fam. Physician. 2011, 84, 1245–1252.
|
[27] |
Ma, Y.H.; Zhang, J.B.; Yu, H.; Zhang, Y.F.; Zhang, H.F.; Hao, C.Y.; Zuo, L.L.; Shi, N.Q.; Li, W.L. Traditional Chinese medicine rhodiola sachalinensis borissova from baekdu mountain (RsBBM) for rheumatoid arthritis: therapeutic effect and underlying molecular mechanisms. Molecules. 2022, 27, 6058.
|
[28] |
Zhang, Q.; Duan, H.X.; Li, R.L.; Sun, J.Y.; Liu, J.; Peng, W.; Wu, C.J.; Gao, Y.X. Inducing apoptosis and suppressing inflammatory reactions in synovial fibroblasts are two important ways for Guizhi-Shaoyao-zhimu Decoction against rheumatoid arthritis. J. Inflamm. Res. 2021, 14, 217–236.
|
[29] |
Kim, J.H.; Huh, J.E.; Baek, Y.H.; Lee, J.D.; Choi, D.Y.; Park, D.S. Effect of Phellodendron amurense in protecting human osteoarthritic cartilage and chondrocytes. J. Ethnopharmacol. 2011, 134, 234–242.
|
[30] |
Xian, Y.F.; Mao, Q.Q.; Ip, S.P.; Lin, Z.X.; Che, C.T. Comparison on the anti-inflammatory effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis in 12-O-tetradecanoyl-phorbol-13-acetate-induced ear edema in mice. J. Ethnopharmacol. 2011, 137, 1425–1430.
|
[31] |
Wan, Y. Observation for clinical effect of phellodendron wet compress in treating the phlebitis caused by infusion. Pak. J. Pharm. Sci. 2018, 31, 1099–1102.
|
[32] |
Resch, M.; Steigel, A.; Chen, Z.L.; Bauer, R. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. J. Nat. Prod. 1998, 61, 347–350.
|
[33] |
Tang, F.Y.; Fan, K.F.; Wang, K.L.; Bian, C.Z. Atractylodin attenuates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome and TLR4 pathways. J. Pharmacol. Sci. 2018, 136, 203–211.
|
[34] |
Zhang, W.J.; Zhao, Z.Y.; Chang, L.K.; Cao, Y.; Wang, S.; Kang, C.Z.; Wang, H.Y.; Zhou, L.; Huang, L.Q.; Guo, L.P. Atractylodis Rhizoma: a review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. J. Ethnopharmacol. 2021, 266, 113415.
|
[35] |
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021, 19, 1–11.
|
[36] |
Huang, Y.T.; Guo, L.B.; Chitti, R.; Sreeharsha, N.; Mishra, A.; Gubbiyappa, S.K.; Singh, Y. Wogonin ameliorate complete Freund’s adjuvant induced rheumatoid arthritis via targeting NF-κB/MAPK signaling pathway. BioFactors. 2020, 46, 283–291.
|
[37] |
Li, C.; Zhang, W.J.; Frei, B. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol. 2016, 9, 104–113.
|
[38] |
Ulusoy, H.G.; Sanlier, N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290–3303.
|
[39] |
Yuan, K.; Zhu, Q.Q.; Lu, Q.Y.; Jiang, H.X.; Zhu, M.M.; Li, X.H.; Huang, G.R.; Xu, A.L. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem. 2020, 84, 108454.
|
[40] |
Zhang, M.K.; Chen, Y.Y.; Zhou, Y.; Wu, X.A. The alleviating effect of quercetin on carbon tetrachloride-induced liver fibrosis in rats and its underlying mechanism. J. Chin. Pharm. Sci. 2022, 31, 840–852.
|
[41] |
Fukuma, Y.; Sakai, E.; Komaki, S.; Nishishita, K.; Okamoto, K.; Tsukuba, T. Rutaecarpine attenuates osteoclastogenesis by impairing macrophage colony stimulating factor and receptor activator of nuclear factor κ-B ligand-stimulated signalling pathways. Clin. Exp. Pharmacol. Physiol. 2018, 45, 863–865.
|
[42] |
Luo, J.Q.; Wang, X.; Jiang, X.H.; Liu, C.; Li, Y.Z.; Han, X.W.; Zuo, X.; Li, Y.N.; Li, N.; Xu, Y.N.; Si, S.Y. Rutaecarpine derivative R3 attenuates atherosclerosis via inhibiting NLRP3 inflammasome-related inflammation and modulating cholesterol transport. FASEB J. 2020, 34, 1398–1411.
|
[43] |
Wang, S.; Liu, L.; Zhang, Y.B.; Xu, W; Yang, X.W. Intestinal anti-inflammatory effects of main components of the fruits of Euodia rutaecarpa in a co-culture model of the human colorectal adenocarcinoma cells and RAW264.7 macrophages. J. Chin. Pharm. Sci. 2020, 29, 868–879.
|
[44] |
Xie, J.; Zhang, A.H.; Qiu, S.; Zhang, T.L.; Li, X.N.; Yan, G.L.; Sun, H.; Liu, L.; Wang, X.J. Identification of the perturbed metabolic pathways associating with prostate cancer cells and anticancer affects of obacunone. J. Proteomics. 2019, 206, 103447.
|
[45] |
Kim, J.; Jayaprakasha, G.K.; Patil, B.S. Obacunone exhibits anti-proliferative and anti-aromatase activity in vitro by inhibiting the p38 MAPK signaling pathway in MCF-7 human breast adenocarcinoma cells. Biochimie. 2014, 105, 36–44.
|
[46] |
Gao, Y.; Hou, R.; Liu, F.; Liu, H.B.; Fei, Q.L.; Han, Y.X.; Cai, R.L.; Peng, C.; Qi, Y. Obacunone causes sustained expression of MKP-1 thus inactivating p38 MAPK to suppress pro-inflammatory mediators through intracellular MIF. J. Cell. Biochem. 2018, 119, 837–849.
|
[47] |
Qiu, S.; Sun, H.; Zhang, A.H.; Xu, H.Y.; Yan, G.L.; Han, Y.; Wang, X.J. Natural alkaloids: basic aspects, biological roles, and future perspectives. Chin. J. Nat. Med. 2014, 12, 401–406.
|
[48] |
Kwon, S.; Chan, A.T. Extracting the benefits of berberine for colorectal cancer. Lancet Gastroenterol. Hepatol. 2020, 5, 231–233.
|
[49] |
Li, X.N.; Zhang, A.H.; Sun, H.; Liu, Z.D.; Zhang, T.L.; Qiu, S.; Liu, L.; Wang, X.J. Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget. 2017, 8, 65022–65041.
|
[50] |
Kim, M.; Kim, T.W.; Kim, C.J.; Shin, M.S.; Hong, M.H.; Park, H.S.; Park, S.S. Berberine ameliorates brain inflammation in poloxamer 407-induced hyperlipidemic rats. Int. Neurourol. J. 2019, 23, S102–S110.
|
[51] |
Habtemariam, S. The quest to enhance the efficacy of berberine for type-2 diabetes and associated diseases: physicochemical modification approaches. Biomedicines. 2020, 8, 90.
|
[52] |
Chen, X.; Jiang, X.Z.; Cheng, C.F.; Chen, J.; Huang, S.Y.; Xu, M.Q.; Liu, S.M. Berberine attenuates cardiac hypertrophy through inhibition of mTOR signaling pathway. Cardiovasc. Drugs Ther. 2020, 34, 463–473.
|
[53] |
Qin, S.R.; Tang, H.L.; Li, W.; Gong, Y.N.; Li, S.S.; Huang, J.; Fang, Y.X.; Yuan, W.J.; Liu, Y.Y.; Wang, S.J.; Guo, Y.M.; Guo, Y.; Xu, Z.F. AMPK and its activator berberine in the treatment of neurodegenerative diseases. Curr. Pharm. Des. 2020, 26, 5054–5066.
|
[54] |
Di Pierro, F.; Bertuccioli, A.; Giuberti, R.; Saponara, M.; Ivaldi, L. Role of a berberine-based nutritional supplement in reducing diarrhea in subjects with functional gastrointestinal disorders. Minerva Gastroenterol. Dietol. 2020, 66, 29–34.
|
[55] |
Xie, H.G.; Wang, Q.Q.; Zhang, X.Y.; Wang, T.; Hu, W.; Manicum, T.; Chen, H.; Sun, L.J. Possible therapeutic potential of berberine in the treatment of STZ plus HFD-induced diabetic osteoporosis. Biomed. Pharmacother. 2018, 108, 280–287.
|
[56] |
Wang, X.; He, X.; Zhang, C.F.; Guo, C.R.; Wang, C.Z.; Yuan, C.S. Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats. Biomed. Pharmacother. 2017, 89, 887–893.
|
[57] |
Kiplimo, J.J.; Shahidul Islam, M.; Koorbanally, N.A. Ring A-seco limonoids and flavonoids from the Kenyan Vepris uguenensis Engl. and their antioxidant activity. Phytochemistry. 2012, 83, 136–143.
|
[58] |
Chen, G.R.; Liu, C.; Zhang, M.B.; Wang, X.B.; Xu, Y.B. Niloticin binds to MD-2 to promote anti-inflammatory pathway activation in macrophage cells. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221133017.
|
[59] |
Esimone, C.O.; Eck, G.; Duong, T.N.; Uberla, K.; Proksch, P.; Grunwald, T. Potential anti-respiratory syncytial virus lead compounds from Aglaia species. Pharmazie. 2008, 63, 768–773.
|
[60] |
Mai, C.T.; Wu, M.M.; Wang, C.L.; Su, Z.R.; Cheng, Y.Y.; Zhang, X.J. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol. Immunol. 2019, 105, 76–85.
|
[61] |
Pan, H.; Lin, Y.Q.; Dou, J.P.; Fu, Z.; Yao, Y.Q.; Ye, S.Y.; Zhang, S.X.; Wang, N.; Liu, A.J.; Li, X.C.; Zhang, F.X.; Chen, D.F. Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Prolif. 2020, 53, e12868.
|
[62] |
Yan, B.Q.; Wang, D.S.; Dong, S.W.; Cheng, Z.R.; Na, L.D.; Sang, M.Q.; Yang, H.Z.; Yang, Z.Q.; Zhang, S.D.; Yan, Z.T. Palmatine inhibits TRIF-dependent NF-κB pathway against inflammation induced by LPS in goat endometrial epithelial cells. Int. Immunopharmacol. 2017, 45, 194–200.
|
[63] |
Cheng, J.J.; Ma, X.D.; Ai, G.X.; Yu, Q.X.; Chen, X.Y.; Yan, F.; Li, Y.C.; Xie, J.H.; Su, Z.R.; Xie, Q.F. Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathways. Drug Des. Devel. Ther. 2022, 16, 2119–2132.
|
[64] |
Tang, C.L.; Hong, J.M.; Hu, C.Y.; Huang, C.X.; Gao, J.; Huang, J.; Wang, D.; Geng, Q.T.; Dong, Y.F. Palmatine protects against cerebral ischemia/reperfusion injury by activation of the AMPK/Nrf2 pathway. Oxid. Med. Cell Longev. 2021, 2021, 6660193.
|
[65] |
Laperle, J.; Hébert-Deschamps, S.; Raby, J.; de Lima Morais, D.A.; Barrette, M.; Bujold, D.; Bastin, C.; Robert, M.A.; Nadeau, J.F.; Harel, M.; Nordell-Markovits, A.; Veilleux, A.; Bourque, G.; Jacques, P.É. The epiGenomic Efficient Correlator (epiGeEC) tool allows fast comparison of user datasets with thousands of public epigenomic datasets. Bioinformatics. 2019, 35, 674–676.
|
[66] |
Taymaz-Nikerel, H.; Cankorur-Cetinkaya, A.; Kirdar, B. Genome-wide transcriptional response of saccharomyces cerevisiae to stress-induced perturbations. Front. Bioeng. Biotechnol. 2016, 4, 17.
|
[67] |
McInnes, I.B.; Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017, 389, 2328–2337.
|
[68] |
Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148.
|
[69] |
Tebib, J.G.; Boughaba, H.; Letroublon, M.C.; Bienvenu, J.; Noel, E.; Armanet, P.; Colson, F.; Roullet, A.; Bouvier, M. Serum IL-2 level in rheumatoid arthritis: correlation with joint destruction and disease progression. Eur. Cytokine Netw. 1991, 2, 239–243.
|
[70] |
Li, B.C.; Guo, Q.L.; Wang, Y.Y.; Su, R.; Gao, C.; Zhao, J.F.; Li, X.F.; Wang, C.H. Increased serum interleukin-2 levels are associated with abnormal peripheral blood natural killer cell levels in patients with active rheumatoid arthritis. Mediators Inflamm. 2020, 2020, 6108342.
|
[71] |
Wood, N.C.; Symons, J.A.; Duff, G.W. Serum interleukin-2-receptor in rheumatoid arthritis: a prognostic indicator of disease activity? J. Autoimmun. 1988, 1, 353–361.
|
[72] |
Rosenzwajg, M.; Lorenzon, R.; Cacoub, P.; Pham, H.P.; Pitoiset, F.; El Soufi, K.; RIbet, C.; Bernard, C.; Aractingi, S.; Banneville, B.; Beaugerie, L.; Berenbaum, F.; Champey, J.; Chazouilleres, O.; Corpechot, C.; Fautrel, B.; Mekinian, A.; Regnier, E.; Saadoun, D.; Salem, J.E.; Sellam, J.; Seksik, P.; Daguenel-Nguyen, A.; Doppler, V.; Mariau, J.; Vicaut, E.; Klatzmann, D. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 2019, 78, 209–217.
|
[73] |
Zhang, X.Y.; Miao, M.; Zhang, R.J.; Liu, X.; Zhao, X.Z.; Shao, M.; Liu, T.; Jin, Y.B.; Chen, J.L.; Liu, H.X.; Zhang, X.; Li, Y.; Zhou, Y.S.; Yang, Y.; Li, R.; Yao, H.H.; Liu, Y.Y.; Li, C.; Li, Y.H.; Ren, L.M.; Su, Y.; Sun, X.L.; He, J.; Li, Z.G. Efficacy and safety of low-dose interleukin-2 in combination with methotrexate in patients with active rheumatoid arthritis: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct. Target. Ther. 2022, 7, 67.
|
[74] |
Sato, K.; Kawasaki, H.; Nagayama, H.; Serizawa, R.; Ikeda, J.; Morimoto, C.; Yasunaga, K.; Yamaji, N.; Tadokoro, K.; Juji, T.; Takahashi, T.A. CC chemokine receptors, CCR-1 and CCR-3, are potentially involved in antigen-presenting cell function of human peripheral blood monocyte-derived dendritic cells. Blood. 1999, 93, 34–42.
|
[75] |
Han, S.W.; Sa, K.H.; Kim, S.I.; Lee, S.I.; Park, Y.W.; Lee, S.S.; Yoo, W.H.; Soe, J.S.; Nam, E.J.; Lee, J.; Park, J.Y.; Kang, Y.M. CCR5 gene polymorphism is a genetic risk factor for radiographic severity of rheumatoid arthritis. Tissue Antigens. 2012, 80, 416–423.
|
[76] |
Agere, S.A.; Akhtar, N.; Watson, J.M.; Ahmed, S. RANTES/CCL5 induces collagen degradation by activating MMP-1 and MMP-13 expression in human rheumatoid arthritis synovial fibroblasts. Front. Immunol. 2017, 8, 1341.
|
[77] |
Itoh, Y. Metalloproteinases in rheumatoid arthritis: potential therapeutic targets to improve current therapies. Prog. Mol. Biol. Transl. Sci. 2017, 148, 327–338.
|
[78] |
Alamgeer; Hasan, U.H.; Uttra, A.M.; Qasim, S.; Ikram, J.; Saleem, M.; Niazi, Z.R. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. Phytomedicine. 2020, 66, 153134.
|
[79] |
Fang, Q.H.; Zhou, C.; Nandakumar, K.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm. 2020, 2020, 3830212.
|
[80] |
Yoshihara, Y.; Nakamura, H.; Obata, K.; Yamada, H.; Hayakawa, T.; Fujikawa, K.; Okada, Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 2000, 59, 455–461.
|
[81] |
Huynh, C.B.; Nagaarudkumaran, N.; Kalyaanamoorthy, S.; Ngo, W. In silico and in vitro approach for validating the inhibition of matrix metalloproteinase-9 by quercetin. Eye Contact Lens. 2023, 49, 193–198.
|
[82] |
Haleagrahara, N.; Hodgson, K.; Miranda-Hernandez, S.; Hughes, S.; Kulur, A.B.; Ketheesan, N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology. 2018, 26, 1219–1232.
|
[83] |
Sung, M.S.; Lee, E.G.; Jeon, H.S.; Chae, H.J.; Park, S.J.; Lee, Y.C.; Yoo, W.H. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation. 2012, 35, 1585–1594.
|
[84] |
Arnhold, J. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. 2020, 21, 8057.
|
[85] |
Fousert, E.; Toes, R.; Desai, J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells. 2020, 9, 915.
|
[86] |
Connelly, M.A.; Marcu, K.B. CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol. Biol. Res. 1995, 41, 537–549.
|
[87] |
Hinz, M.; Scheidereit, C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep. 2014, 15, 46–61.
|
[88] |
Du, M.J.; Ea, C.K.; Fang, Y.; Chen, Z.J. Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB. Mol. Cell. 2022, 82, 2415–2426.e5.
|
[89] |
Yao, M.H.; Huang, X.; Guo, Y.S.; Zhao, J.V.; Liu, Z.H. Disentangling the common genetic architecture and causality of rheumatoid arthritis and systemic lupus erythematosus with COVID-19 outcomes: Genome-wide cross trait analysis and bidirectional Mendelian randomization study. J. Med. Virol. 2023, 95, e28570.
|
[90] |
Ringer, A.; Ruffino, J.P.; Leiva, R.; Cuadranti, N.; Argento, M.C.; Martínez, M.F.; Rolla, I.; Chulibert, S.; Carbone, D.; Palatnik, M.; Cortese, M.N.; Lagrutta, M.; Córdoba, L.; González, F.B.; Pacini, M.F.; Villar, S.R.; Águila, D.; Bottasso, O.A.; Pérez, A.R.; Abdala, M. Chagas disease reactivation in rheumatologic patients: association with immunosuppressive therapy and humoral response. Clin. Rheumatol. 2021, 40, 2955–2963.
|
[91] |
Durieux, M.F.; Lopez, J.G.; Banjari, M.; Passebosc-Faure, K.; Brenier-Pinchart, M.P.; Paris, L.; Gargala, G.; Berthier, S.; Bonhomme, J.; Chemla, C.; Villena, I.; Flori, P.; Fréalle, E.; L’Ollivier, C.; Lussac-Sorton, F.; Montoya, J.G.; Cateau, E.; Pomares, C.; Simon, L.; Quinio, D.; Robert-Gangneux, F.; Yera, H.; Labriffe, M.; Fauchais, A.L.; Dardé, M.L. Toxoplasmosis in patients with an autoimmune disease and immunosuppressive agents: a multicenter study and literature review. PLoS Negl. Trop. Dis. 2022, 16, e0010691.
|
[92] |
Ling, Y.Y.; Yang, J.; Hua, D.; Wang, D.W.; Zhao, C.L.; Weng, L.; Yue, D.D.; Cai, X.T.; Meng, Q.H.; Chen, J.; Sun, X.Y.; Kong, W.K.; Zhu, L.Z.; Cao, P.; Hu, C.P. ZhiJingSan inhibits osteoclastogenesis via regulating RANKL/NF-κB signaling pathway and ameliorates bone erosion in collagen-induced mouse arthritis. Front. Pharmacol. 2021, 12, 693777.
|
[93] |
Tanaka, S. Emerging anti-osteoclast therapy for rheumatoid arthritis. J. Orthop. Sci. 2018, 23, 717–721.
|
[94] |
Wang, Y.; Chen, S.J.; Du, K.Z.; Liang, C.X.; Wang, S.Q.; Owusu Boadi, E.; Li, J.; Pang, X.L.; He, J.; Chang, Y.X. Traditional herbal medicine: therapeutic potential in rheumatoid arthritis. J. Ethnopharmacol. 2021, 279, 114368.
|
[95] |
Attiq, A.; Yao, L.J.; Afzal, S.; Khan, M.A. The triumvirate of NF-κB, inflammation and cytokine storm in COVID-19. Int. Immunopharmacol. 2021, 101, 108255.
|
[96] |
Wu, Y.X.; Ma, L.; Cai, S.H.; Zhuang, Z.; Zhao, Z.Y.; Jin, S.H.; Xie, W.H.; Zhou, L.L.; Zhang, L.; Zhao, J.C.; Cui, J. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduct. Target. Ther. 2021, 6, 167.
|
[97] |
Maldonado, E.; Rojas, D.A.; Urbina, F.; Solari, A. The oxidative stress and chronic inflammatory process in chagas disease: role of exosomes and contributing genetic factors. Oxid. Med. Cell Longev. 2021, 2021, 4993452.
|
[98] |
Guo, G.H.; Cui, J.M.; Song, L.D.; Tang, L.Q.; Fan, S.J.; Shen, B.; Fang, R.; Hu, M.; Zhao, J.L.; Zhou, Y.Q. Activation of NF-κB signaling by the dense granule protein GRA15 of a newly isolated type 1 Toxoplasma gondii strain. Parasit. Vectors. 2022, 15, 347.
|
[99] |
Asagiri, M.; Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone. 2007, 40, 251–264.
|
[100] |
Wang, Y.X. Cardiovascular functional phenotypes and pharmacological responses in apolipoprotein E deficient mice. Neurobiol. Aging. 2005, 26, 309–316.
|
[101] |
Nakanishi, Y.; Kang, S.J.; Kumanogoh, A. Axon guidance molecules in immunometabolic diseases. Inflamm. Regen. 2022, 42, 5.
|
[1] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨六味地黄丸治疗卵巢早衰的作用机制[J]. 中国药学(英文版), 2024, 33(9): 805-818. |
[2] | 朱美玲, 张基荣, 张秋荣, 林羽, 李小艳, 许文, 徐伟. 基于网络药理学和化学计量学对中成药质量控制方法研究: 以活络散为例[J]. 中国药学(英文版), 2024, 33(9): 819-836. |
[3] | 李霞, 程贝贝, 谭骏岚, 万佳婧, 王宇红, 戴爱国. 黄芪主成分槲皮素通过MAPK通路调控PASMCs铁死亡抗低氧性肺动脉高压的研究[J]. 中国药学(英文版), 2024, 33(8): 714-729. |
[4] | 魏晓玉, 于路航, 李梦茹, 徐强. 网络药理学研究揭示连花清瘟-辛夷散联合治疗新冠后嗅觉损伤的潜在作用机制[J]. 中国药学(英文版), 2024, 33(7): 631-646. |
[5] | 张啸, 钟叶, 胡永生, 王博龙. 《肿瘤良方大全》中肝癌用药规律挖掘及其核心药对机制分析[J]. 中国药学(英文版), 2024, 33(7): 647-658. |
[6] | 韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524. |
[7] | 李双, 孙璐瑶, 尤斯涵, 张佳燚, 殷宏艳, 曹津萌, 刘心星, 郭春燕, 刘喜富. 基于网络药理学探讨桃红四物汤治疗阿尔茨海默症的主要有效成分及其作用机制[J]. 中国药学(英文版), 2024, 33(6): 525-542. |
[8] | 徐云玲, 贺蛟龙. 基于网络药理学探讨白英干预类风湿性关节炎的潜在作用机制研究[J]. 中国药学(英文版), 2024, 33(6): 559-570. |
[9] | 崔旭阳, 姬中杰, 时潘扬, 魏晓岑, 马玉宁, 邢梦真. 基于网络药理学探讨复方苦参注射液治疗黑色素瘤的作用机制[J]. 中国药学(英文版), 2024, 33(5): 448-457. |
[10] | 刘芳琳, 张春娟, 沈秋跃, 周昔程, 赵越, 富冯峰, 刘芳. 基于网络药理学和分子对接技术探讨参芪扶正注射液治疗慢性阻塞性肺疾病的潜在药理学机制[J]. 中国药学(英文版), 2024, 33(4): 339-351. |
[11] | 王晓航, 王乐, 肖銮娟, 芦春斌. 芒柄花黄素通过雌激素受体抑制前列腺增生[J]. 中国药学(英文版), 2024, 33(3): 216-229. |
[12] | 陈莹, 应海霞, 蔡婷婷, 徐云玲. 基于网络药理学分析落新妇干预类风湿性关节炎的作用机制及实验验证[J]. 中国药学(英文版), 2024, 33(3): 248-257. |
[13] | 王思宇, 周淑伟, 喻斌. 基于网络药理学-分子对接探析灭幽汤"异病同治"慢性萎缩性胃炎和胃溃疡的作用机制[J]. 中国药学(英文版), 2024, 33(3): 258-271. |
[14] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
[15] | 陈云丽, 颜仁梁, 李丽莎, 张亚敏, 徐小妹, 卢雪花, 徐榕青, 林文津. 基于网络药理学和分子对接探讨陈皮治疗阿尔茨海默病的作用机制[J]. 中国药学(英文版), 2024, 33(2): 142-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||