中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (6): 495-510.DOI: 10.5246/jcps.2024.06.037
朱源1, 许佳琦1, 陈小艳1, 冯颖淑3, Caleb Kesse Firempong1, 何海冰4,5,*(), 刘宏飞1,2,4,*()
收稿日期:
2024-02-06
修回日期:
2024-02-25
接受日期:
2024-03-29
出版日期:
2024-06-30
发布日期:
2024-06-30
通讯作者:
何海冰, 刘宏飞
Yuan Zhu1, Jiaqi Xu1, Xiaoyan Chen1, Yingshu Feng3, Caleb Kesse Firempong1, Haibing He4,5,*(), Hongfei Liu1,2,4,*()
Received:
2024-02-06
Revised:
2024-02-25
Accepted:
2024-03-29
Online:
2024-06-30
Published:
2024-06-30
Contact:
Haibing He, Hongfei Liu
Supported by:
摘要:
重组人白细胞介素-2(rhIL-2)具有促进免疫细胞增殖和分化的潜能, 可用于治疗肺癌。然而, rhIL-2半衰期短, 生物活性不稳定, 需要将其载入微球中进行缓释给药。本研究采用同轴静电喷涂技术制备了载rhIL-2的核壳微球。以量子点为示踪材料, 核层用壳聚糖做载体包裹rhIL-2和量子点偶联物, 壳层采用透明质酸做载体制备核壳复合微球。采用单因素法对载体浓度、电压、针孔内径、喷雾流量等因素进行了研究。优化了同轴静电喷雾法制备核壳微球的工艺参数。结果表明, 制备的核壳微球粒径在1.2–2.0 μm, 包封率和载药量分别为78.39% ± 1.96%和19.58 ± 2.76 μg/mg。体外释放实验显示微球释放效果较好, 无突释现象。该制剂的生物学活性实验表明, 核壳微球中的rhIL-2与游离蛋白药物具有相同的作用。体内成像分析也显示微球具有主动靶向性。本研究为rhIL-2靶向缓释微球的研制提供了理论依据。
Supporting:
朱源, 许佳琦, 陈小艳, 冯颖淑, Caleb Kesse Firempong, 何海冰, 刘宏飞. 同轴静电喷涂法制备核壳靶向示踪重组人白细胞介素II微球[J]. 中国药学(英文版), 2024, 33(6): 495-510.
Yuan Zhu, Jiaqi Xu, Xiaoyan Chen, Yingshu Feng, Caleb Kesse Firempong, Haibing He, Hongfei Liu. Preparation of core-shell targeted tracer recombinant human interleukin II microspheres via coaxial electrostatic spraying[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(6): 495-510.
[1] |
Tao, L.F.; Yang, B.Q.; Zeng, Z.; Xu, J.P.; Lin, D.H.; Chen, Q.C.; Chen, J.M. Effect of γδ T cells on the proliferation, apoptosis and autophagy of multiple myeloma cells. J. Exp. Hematol. 2022, 30, 797–803.
|
[2] |
Hino, M.; Kawanami, T.; Xu, J.; Morokuma, D.; Hirata, K.; Yamashita, M.; Karasaki, N.; Tatsuke, T.; Mon, H.; Iiyama, K.; Kamiya, N.; Banno, Y.; Kusakabe, T.; Lee, J.M. High-level expression and purification of biologically active human IL-2 using silkworm-baculovirus expression vector system. J. Asia Pac. Entomol. 2016, 19, 313–317.
|
[3] |
Xu, P.F.; Zhe. L.; Wan, Y.Y.; Yao, Z.H.; Li, D.Z.; Wang, C.; Zhai, C.C.; Li, W.; Lin, D.J. Effects of recombinant human endostatin combined with recombinant human interferon γ on mouse Lewis lung cancer xenografts. J. Shandong Univ. Health Sci. 2020, 58, 1–5.
|
[4] |
Baghayeri, M.; Veisi, H.; Farhadi, S.; Beitollahi, H.; Maleki, B. Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J. Iran. Chem. Soc. 2018, 15, 1015–1022.
|
[5] |
Tighzert, W.; Habi, A.; Ajji, A.; Sadoun, T.; Daoud, F.B.O. Fabrication and characterization of nanofibers based on poly(lactic acid)/chitosan blends by electrospinning and their functionalization with phospholipase A1. Fibers Polym. 2017, 18, 514–524.
|
[6] |
Uklein, A.V.; Multian, V.V.; Oliinyk, B.V.; Doroshchuk, V.V.; Alekseev, S.A.; Lysenko, V.V.; Brodyn, M.S.; Gayvoronsky, V.Y. Impact of water adsorption on nonlinear optical properties of functionalized porous silicon. Nanoscale Res. Lett. 2017, 12, 1–10.
|
[7] |
Fishkova, T.Y. Electrostatic spectrograph with a wide range of simultaneously recorded energies composed of two coaxial electrodes with closed end faces and a discrete combined external electrode. Tech. Phys. 2018, 63, 116–119.
|
[8] |
Du, R.L.; Wang, Y.Z.; Huang, Y.H.; Zhao, Y.P.; Zhang, D.C.; Du, D.Y.; Zhang, Y.; Li, Z.G.; McGinty, S.; Pontrelli, G.; Yin, T.Y.; Wang, G.X. Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating. NPG Asia Mater. 2018, 10, 642–658.
|
[9] |
Gao, Q.; Luo, J.; Wang, X.Y.; Gao, C.X.; Ge, M.Q. Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption. Nanoscale Res. Lett. 2015, 10, 176.
|
[10] |
Tasci, M.E.; Dede, B.; Tabak, E.; Gur, A.; Sulutas, R.B.; Cesur, S.; Ilhan, E.; Lin, C.C.; Paik, P.; Ficai, D.; Ficai, A.; Gunduz, O. Production, optimization and characterization of polylactic acid microparticles using electrospray with porous structure. Appl. Sci. 2021, 11, 5090.
|
[11] |
Bai, J.A.; Wang, J.C. Alginate-coated quaternized chitosan nanoparticles for oral delivery of insulin. J. Chin. Pharm. Sci. 2014, 23, 823–829.
|
[12] |
Xiao, S.; Yang, Z.; Wang, L.H.; Ming-Guan, P.; University, Y. Preparation and evaluation of hyaluronic acid and loratadine microcapsule and microsphere by spray drying technique. Chin. J. Hosp. Pharm. 2016, 35, 1255–1260.
|
[13] |
Zheng, F.; Zhu, B.; Xin, X.; He, F.; Cui, Y.C. Meta-analysis on the use of hyaluronic acid gel to prevent recurrence of intrauterine adhesion after hysteroscopic adhesiolysis. Taiwan J. Obstet. Gynecol. 2019, 58, 731–736.
|
[14] |
Carvalho, A.M.; Valcarcel, J.; da Costa, D.S.; Gomes, M.; Vazquez, J.A.; Reis, R.L.; Novoa-Carballal, R.; Pashkuleva, I. Hyaluronan Brush-like Copolymers Promote CD44 Declustering in Breast Cancer Cells. ACS Appl. Mater. Interfaces. 2022, 14, 41179–41789.
|
[15] |
Kulkarni, N.S.; Guererro, Y.; Gupta, N.; Muth, A.; Gupta, V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J. Drug Deliv. Sci. Technol. 2019, 49, 352–364.
|
[16] |
Du, B.J.; Liu, J.H.; Ding, G.Y.; Han, X.; Li, D.; Wang, E.K.; Wang, J. Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. Nano Res. 2017, 10, 2280–2295.
|
[17] |
Sultana, N.; Zainal, A. Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties. Bull. Mater. Sci. 2016, 39, 337–343.
|
[18] |
Abreu, F.O.M.S.; Forte, M.M.C.; Kist, T.B.L.; Honaiser, L.P. Effect of the preparation method on the drug loading of alginate-chitosan microspheres. Express Polym. Lett. 2010, 4, 456–464.
|
[19] |
Wang, M.J.; Zhang, H.; Lu, Y.; Zou, H.; Zhang, F.; Chen, H.J.; Wang, J.F.; Zhong, Y.Q. Stability of rh-endostatin and fabrication/release test of rh-endostatin loaded PLGA microspheres. Acad. J. Second. Mil. Med. Univ. 2010, 29, 28–31.
|
[20] |
Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm. 2013, 453, 12–24.
|
[21] |
Rahman, M.; Khalipha, A.B.R.; Azad, M.; Faruki, M.Z.; Chaurasiya, A.; Hossain, H. Effect of natural and synthetic polymer on release of ketotifen fumarate matrix tablets: a sustained release dosage form. Int. J. Pharm. Sci. Res. 2013, 4, 1401–1408.
|
[22] |
Matei Ghimbeu, C.; Schoonman, J.; Lumbreras, M. Porous indium oxide thin films deposited by electrostatic spray deposition technique. Ceram. Int. 2008, 34, 95–100.
|
[23] |
Law, S.E. Agricultural electrostatic spray application: a review of significant research and development during the 20th century. J. Electrost. 2001, 51, 25–42.
|
[24] |
Li, S.R.; Yesibolati, N.; Qiao, Y.; Ge, S.Y.; Feng, X.Y.; Zhu, J.F.; Chen, C.H. Electrostatic spray deposition of porous Fe2V4O13 films as electrodes for Li-ion batteries. J. Alloys Compd. 2012, 520, 77–82.
|
[25] |
Fei, B.; Lu, H.F.; Xin, J.H. One-step preparation of organosilica@chitosan crosslinked nanospheres. Polymer. 2006, 47, 947–950.
|
[26] |
Onojima, N.; Takahashi, S.; Kato, T. Pentacene-based organic field-effect transistors with poly(methyl methacrylate) top-gate insulators fabricated by electrostatic spray deposition. Synth. Met. 2013, 177, 72–76.
|
[27] |
Zhao, W.; Liu, W.L.; Xu, R.; Wang, Y.A.; Jin, K.X.; Li, H.C. Fabrication and characterization of dual drug-loaded poly (lactic-co-glycolic acid) fiber-microsphere composite scaffolds. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 375–383.
|
[28] |
Liu, Z.; Ye, W.L.; Zheng, J.C.; Wang, Q.D.; Ma, G.W.; Liu, H.Y.; Wang, X.M. Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release. Regen. Biomater. 2020, 7, 381–390.
|
[29] |
Colbert, S.A.; Cairncross, R.A. A computer simulation for predicting electrostatic spray coating patterns. Powder Technol. 2005, 151, 77–86.
|
[30] |
Zhou, X.Q.; Hou, C.L.; Chang, T.L.; Zhang, Q.R.; Liang, J.F. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf. B. 2020, 187, 110645.
|
[31] |
Zaouk, D.; Zaatar, Y.; Asmar, R.; Jabbour, J. Piezoelectric zinc oxide by electrostatic spray pyrolysis. Microelectron. J. 2006, 37, 1276–1279.
|
[32] |
Karnchanajindanun, J.; Srisa-ard, M.; Baimark, Y. Genipin-cross-linked chitosan microspheres prepared by a water-in-oil emulsion solvent diffusion method for protein delivery. Carbohydr. Polym. 2011, 85, 674–680.
|
[1] | 李承群, 牛霞, 牟家慧, 王晓梅, 苏瑾, 李桂玲. APT011缓释微球的制备及体外评价[J]. 中国药学(英文版), 2020, 29(8): 554-563. |
[2] | 孙玉, 张新明, 汤琳. 载有紫杉醇的核-壳MPEG-PLA/PLA纳米微球的制备、优化及体外评价[J]. 中国药学(英文版), 2015, 24(2): 104-110. |
[3] | 赵子明, 李佳林, 杨勇杰, 崔代超, 卢晓静, 范田园. 载舒尼替尼栓塞微球的制备及体外性质研究[J]. 中国药学(英文版), 2014, 23(8): 558-564. |
[4] | 杨敏, 卢静, 蒋学华*. 透明质酸治疗烧烫伤的系统评价[J]. , 2013, 22(3): 277-281. |
[5] | 吴雅楠, 孟文静, 柳盈盈, 郭同, 范田园* . 栓塞用明胶微球的制备及其性质评价[J]. , 2012, 21(3): 242-250. |
[6] | 沈晴, 高姗姗, 谢毅妮, 凌立成, 高峰*. 新型口服活性炭微球对链脲佐菌素诱导的糖尿病模型大鼠治疗作用的研究[J]. , 2012, 21(3): 234-241. |
[7] | 谢毅妮, 高峰*, 袁慧慧, 梁晓怿, 凌立成. 新型活性炭微球的制备及其对内源性分子的体外吸附性能研究[J]. , 2011, 20(3): 302-308. |
[8] | 艾国, 梅兴国*. 胸腺五肽微球体外释放度的加速试验方法研究[J]. , 2008, 17(1): 41-45. |
[9] | 赵彬, 杨丽娟, 王坚成*, 张强. 环孢素A微球的体外释放影响因素[J]. , 2007, 16(4): 252-256. |
[10] | 胡容峰*, 朱家壁, 马凤余, 许向阳, 孙玉亮, 梅康康, 李师. 球晶制粒技术制备水飞蓟宾缓释微球[J]. , 2006, 15(2): 83-91. |
[11] | 杨帆*, 梁仁, 潘育方, 赵耀明, 旺朝阳, 徐安龙. 环丙沙星聚乳酸微球的制备、性状和体外释药性能的研究[J]. , 2005, 14(2): 95-99. |
[12] | 祁荣, 平其能*, 徐瑞阳, 石勇平. 壳聚糖—半胱氨酸轭合物对胰岛素酶降解和降血糖作用的影响[J]. , 2004, 13(2): 124-129. |
[13] | 周新腾*, 朱峰, 潘卫三, 张汝华. 雌二醇生物可降解缓释微球的制备四氢呋喃的加入对微球性质的影响[J]. , 2003, 12(1): 21-25. |
[14] | 何应, 魏树礼. 聚乳酸微球体外降解研究[J]. , 2001, 10(1): 20-23. |
[15] | 李凤前*, 胡晋红, 陆彬, 朱全刚, 孙华君. 环丙沙星白蛋白微球的制备及体外释药特性[J]. , 2001, 10(1): 24-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||