中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (8): 603-615.DOI: 10.5246/jcps.2023.08.050
• 【综 述】 • 下一篇
Eric Wei Chiang Chan1,*(), Ying Ki Ng1, Hung Tuck Chan2, Siu Kuin Wong3
收稿日期:
2023-02-12
修回日期:
2023-03-15
接受日期:
2023-04-23
出版日期:
2023-08-31
发布日期:
2023-08-31
通讯作者:
Eric Wei Chiang Chan
作者简介:
Eric Wei Chiang Chan1,*(), Ying Ki Ng1, Hung Tuck Chan2, Siu Kuin Wong3
Received:
2023-02-12
Revised:
2023-03-15
Accepted:
2023-04-23
Online:
2023-08-31
Published:
2023-08-31
Contact:
Eric Wei Chiang Chan
About author:
Dr Eric Wei Chiang CHAN is Associate Professor at the Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia. Dr Eric Chan has 10 publications in JCPS with 91 papers, 2597 citations and 24 h-index in Scopus. Dr Chan’s publications were ranked top 2% in the world (Pharmacology and Pharmacy) from 2020−2022 by University of Stanford. |
Dr Siu Kuin WONG is Lecturer at the School of Foundation Studies, Xiamen University Malaysia, Sepang, Selangor. Dr Wong has 10 papers in JCPS with 44 papers, 1558 citations and 17 h-index in Scopus. |
摘要:
In this overview, the current knowledge of the constituents of flavonoids isolated from the roots of Sophora flavescens (kushen) is updated. Flavonoids consist of several classes, such as flavanones, flavonols, chalcones, isoflavones, biflavonoids, flavanols, and flavones. The most common compounds are kurarinone (KRN), sophoraflavanone G (SFG), 2?-methoxykurarinone, kuraridine, isoxanthohumol, and formononetin. KRN and SFG are two major flavanones with more vital anticancer properties than other flavonoids. From the literature, the cytotoxic values of KRN and SFG are variable and depend on the type of cancer cells tested. The anticancer activities of these two flavonoids involve different molecular mechanisms. Clinical trials are needed before anticancer drugs from KRN and SFG can be developed.
Supporting:
Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G[J]. 中国药学(英文版), 2023, 32(8): 603-615.
Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 603-615.
Figure 2. Chemical structures of sophoflavescenol (a), kuraridin (b), genistein (c), luteolin (d), sophobiflavonoid E (e), and kushenol H (f), representing flavonols, chalcones, isoflavones, flavones, biflavonoids, and flavanols in the roots of Sophora flavescens, respectively.
Figure 3. The chemical structures of KRN (left) and SFG (right), showing the highlighted lavandulyl moiety at C8, and the encircled naringenin moiety of rings A?C.
[1] |
Bao, B.; Vincent, M.A. Sophora L. Flora China. 2010, 10, 85−93.
|
[2] |
Krishna, P.M.; Knv, R.; Sandhya, S.; Banji, D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Farmacogn. 2012, 22, 1145–1154.
|
[3] |
Aly, S.H.; Elissawy, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Efferth, T.; Singab, A.N. The pharmacology of the genus Sophora (Fabaceae): An updated review. Phytomedicine. 2019, 64, 153070.
|
[4] |
Abd-Alla, H.I.; Souguir, D.; Radwan, M.O. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch. Pharm. Res. 2021, 44, 903–986.
|
[5] |
Boozari, M.; Soltani, S.; Iranshahi, M. Biologically active prenylated flavonoids from the genus Sophora and their structure-activity relationship-A review. Phytother. Res. 2019, 33, 546–560.
|
[6] |
He, X.; Fang, J.; Huang, L.; Wang, J.; Huang, X. Sophora flavescens Ait: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2015, 172, 10–29.
|
[7] |
Li, J.J.; Zhang, X.; Shen, X.C.; Xu, C.Y.; Tan, C.J.; Lin, Y. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait. Fitoterapia. 2020, 143, 104556.
|
[8] |
Sun, P.; Zhao, W.; Wang, Q.; Chen, L.; Sun, K.; Zhan, Z.; Wang, J. Chemical diversity, biological activities and Traditional uses of and important Chinese herb Sophora. Phytomedicine. 2022, 100, 154054.
|
[9] |
Chan, E.W.C.; Wong, S.K.; Chan, H.T. An overview of the chemistry, contents and anticancer activities of matrine, oxymatrine, and compound kushen injection from the roots of Sophora flavescens. J. Chin. Pharm. Sci. 2022, 31, 321–333.
|
[10] |
Li, J.C.; Zhang, Z.J.; Liu, D.; Jiang, M.Y.; Li, R.T.; Li, H.M. Quinolizidine alkaloids from the roots of Sophora flavescens. Nat. Prod. Res. 2022, 36, 1781–1788.
|
[11] |
Sun, M.; Han, J.; Duan, J.; Cui, Y.; Wang, T.; Zhang, W.; Liu, W.; Hong, J.; Yao, M.; Xiong, S.; Yan, X. Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother. Res. 2007, 21, 269–277.
|
[12] |
Sun, M.Y.; Cao, H.Y.; Sun, L.; Dong, S.; Bian, Y.Q.; Han, J.; Zhang, L.J.; Ren, S.; Hu, Y.Y.; Liu, C.H.; Xu, L.M.; Liu, P. Antitumor activities of Kushen: literature review. Evid. Based Complement. Altern. Med. 2012, 2012, 373219.
|
[13] |
Li, K.; Wang, H. Simultaneous determination of matrine, sophoridine and oxymatrine in Sophora flavescens Ait. by high performance liquid chromatography. Biomed. Chromatogr. 2004, 18, 178–182.
|
[14] |
Yu, Y.; Ding, P.; Chen, D. Determination of quinolizidine alkaloids in Sophora medicinal plants by capillary electrophoresis. Anal. Chim. Acta. 2004, 523, 15–20.
|
[15] |
Liu, X.J.; Cao, M.A.; Li, W.H.; Shen, C.S.; Yan, S.Q.; Yuan, C.S. Alkaloids from Sophora flavescens Aiton. Fitoterapia. 2010, 81, 524–527.
|
[16] |
Lu, K.Z.; Feng, Z.M.; Yuan, X.; Yang, Y.N.; Jiang, J.S.; Zhang, X.; Zhang, P.C. Five novel pterocarpan derivatives from Sophora flavescens. Chin. J. Chem. 2021, 39, 2763–2768.
|
[17] |
Du, X.Y.; Li, G.X.; Chen, X.Q.; Li, R.T.; Zhang, Z.J. Pterocarpans and 2-arylbenzofurans from Sophora flavescens Aiton and their chemotaxonomic significance. Biochem. Syst. Ecol. 2022, 100, 104357.
|
[18] |
Wang, Y.; Chen, S.; Yu, O. Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol. Biotechnol. 2011, 91, 949–956.
|
[19] |
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci. 2016, 5, e47.
|
[20] |
Chan, E.W.C.; Ng, Y.K.; Tan, C.Y.; Alessandro, L.; Wong, S.K.; Chan, H.T. Diosmetin and tamarixetin (methylated flavonoids): a review on their chemistry, sources, pharmacology, and anticancer properties. J. Appl. Pharm. Sci. 2021, 11, 22–28.
|
[21] |
Chan, E.W.C.; Wong, S.K.; Chan, H.T. Acacetin and chrysoeriol: a short review of the chemistry, plant sources, bioactivities and structure-activity relationships of these methylated flavones. Trop. J. Nat. Prod. Res. 2022, 6, 1–7.
|
[22] |
Singh, M.; Kaur, M.; Silakari, O. Flavones: an important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239.
|
[23] |
Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem. 2017, 142, 213–228.
|
[24] |
Guven, H.; Arici, A.; Simsek, O. Flavonoids in our foods: a short review. J. Basic Clin. Heal. Sci. 2019, 3, 96–106.
|
[25] |
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810.
|
[26] |
Matsuo, K.; Ito, M.; Honda, G.; Qui, T.; Kiuchi, F. Trypanocidal flavonoids from Sophora flavescens. Nat. Med. 2003, 57, 253–255.
|
[27] |
Zhang, L.; Xu, L.; Xiao, S.S.; Liao, Q.F.; Li, Q.; Liang, J.; Chen, X.H.; Bi, K.S. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2007, 44, 1019–1028.
|
[28] |
Ma, J.Y.; Zhao, D.R.; Yang, T.; Liu, D.; Li, R.T.; Li, H.M. Prenylflavanones isolated from Sophora flavescens. Phytochem. Lett. 2019, 29, 138–141.
|
[29] |
Huang, R.; Liu, Y.; Zhao, L.L.; Chen, X.X.; Wang, F.; Cai, W.; Chen, L. A new flavonoid from Sophora flavescens Ait. Nat. Prod. Res. 2017, 31, 2228–2232.
|
[30] |
Liu, D.; Xin, X.; Su, D.H.; Liu, J.; Wei, Q.; Li, B.; Cui, J. Two new lavandulyl flavonoids from Sophora flavescens. Nat. Prod. Commun. 2010, 5, 1889–1891.
|
[31] |
Kyogoku, K.; Hatayama, K.; Komatsu, M. Constituents of Chinese crude drug "Kushen" (the root of Sophora flavescens Ait.). Isolation of five new flavonoids and formononetin. Chem. Pharm. Bull. 1973, 21, 2733–2738.
|
[32] |
Ko, W.G.; Kang, T.H.; Kim, N.Y.; Lee, S.J.; Kim, Y.C.; Ko, G.I.; Ryu, S.Y.; Lee, B.H. Lavandulyl flavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens. Toxicol. Vitro. 2000, 14, 429–433.
|
[33] |
Ma, X.C.; Xin, X.L.; Liu, K.X.; Zhang, B.J.; Li, F.Y.; Guo, D.A. Simultaneous determination of nine major flavonoids in Sophora flavescens by RP-LC. Chromatographia. 2008, 68, 471–474.
|
[34] |
Zhang, Y.; Zhang, P.; Cheng, Y. Structural characterization of isoprenylated flavonoids from Kushen by electrospray ionization multistage tandem mass spectrometry. J. Mass Spectrom. 2008, 43, 1421–1431.
|
[35] |
Long, G.; Wang, J.; Min, D.; Xu, Y.; Jia, J.; Wang, A. Research progress on flavonoids from the roots of Sophora flavescens Ait. and their biological activities. Asian J. Tradit. Med. 2021, 16, 385–397.
|
[36] |
Oh, I.; Yang, W.Y.; Chung, S.C.; Kim, T.Y.; Oh, K.B.; Shin, J. In vitro sortase A inhibitory and antimicrobial activity of flavonoids isolated from the roots of Sophora flavescens. Arch. Pharm. Res. 2011, 34, 217–222.
|
[37] |
Yang, Y.N.; Zhu, H.; Yuan, X.; Zhang, X.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Seven new prenylated flavanones from the roots of Sophora flavescens and their anti-proliferative activities. Bioorg. Chem. 2021, 109, 104716.
|
[38] |
Quang, T.; Nhiem, N.X.; Anh, H.; Tai, B.H.; Minh, C.; Kim, Y.H.; Kiem, P. Flavonoids from the roots of Sophora flavescens. Viet. J. Chem. 2015, 53, 77–81.
|
[39] |
Kang, T.H.; Jeong, S.J.; Ko, W.G.; Kim, N.Y.; Lee, B.H.; Inagaki, M.; Miyamoto, T.; Higuchi, R.; Kim, Y.C. Cytotoxic lavandulyl flavanones from Sophora flavescens. J. Nat. Prod. 2000, 63, 680–681.
|
[40] |
Jin, J.H.; Kim, J.S.; Kang, S.S.; Son, K.H.; Chang, H.W.; Kim, H.P. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens. J. Ethnopharmacol. 2010, 127, 589–595.
|
[41] |
Huang, Q.; Xu, L.; Qu, W.S.; Ye, Z.H.; Huang, W.Y.; Liu, L.Y.; Lin, J.F.; Li, S.; Ma, H.Y. TLC bioautography-guided isolation of antioxidant activity components of extracts from Sophora flavescens Ait. Eur. Food Res. Technol. 2017, 243, 1127–1136.
|
[42] |
Weng, Z.; Zeng, F.; Zhu, Z.; Qian, D.; Guo, S.; Wang, H.; Duan, J.A. Comparative analysis of sixteen flavonoids from different parts of Sophora flavescens Ait. by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 156, 214–220.
|
[43] |
Huang, X.B.; Yuan, L.W.; Shao, J.; Yang, Y.; Liu, Y.; Lu, J.J.; Chen, L. Cytotoxic effects of flavonoids from root of Sophora flavescens in cancer cells. Nat. Prod. Res. 2021, 35, 4317–4322.
|
[44] |
Wu, L.J.; Miyase, T.; Ueno, A.; Kuroyanagi, M.; Noro, T.; Fukushima, S. Studies on the constituents of Sophora flavescens Aiton. II. Chem. Pharm. Bull. 1985, 33, 3231–3236.
|
[45] |
Wu, L.J.;Miyase, T.;Ueno, A.;Kuroyanagi, M.;Noro, T.; Fukushima, S. Studies on the constituents of Sophora flavescens Ait. III. Yakugaku Zasshi.1985, 105, 736–741.
|
[46] |
Wu, L.J.; Miyase, T.; Ueno, A.; Kuroyanagi, M.; Noro, T.; Fukushima, S.; Sasaki, S. Studies on the constituents of Sophora flavescens Ait. V. Yakugaku Zasshi. 1986, 106, 22–26.
|
[47] |
Ryu, S.Y.; Lee, H.S.; Kim, Y.K.; Kim, S.H. Determination of isoprenyl and lavandulyl positions of flavonoids from Sophora flavescens by NMR experiment. Arch. Pharmacal Res. 1997, 20, 491–495.
|
[48] |
Kuroyanagi, M.; Arakawa, T.; Hirayama, Y.; Hayashi, T. Antibacterial and antiandrogen flavonoids from Sophora flavescens. J. Nat. Prod. 1999, 62, 1595–1599.
|
[49] |
Li, J.; Lin, Y.; He, L.; Ou, R.; Chen, T.; Zhang, X.; Li, Q.; Zeng, Z.; Long, Q. Two new isoprenoid flavonoids from Sophora flavescens with antioxidant and cytotoxic activities. Molecules. 2021, 26, 7228.
|
[50] |
Shen, C.C.; Lin, T.W.; Huang, Y.L.; Wan, S.T.; Shien, B.J.; Chen, C.C. Phenolic constituents of the roots of Sophora flavescens. J. Nat. Prod. 2006, 69, 1237–1240.
|
[51] |
Kim, C.Y.; Kim, H.J.; Kim, K.M.; Oak. M.H. Vasorelaxant prenylated flavonoids from the roots of Sophora flavescens. Biosci. Biotechnol. Biochem. 2013, 77, 395–397.
|
[52] |
Zhu, H.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Sophoflavanones A and B, two novel prenylated flavanones from the roots of Sophora flavescens. Bioorg. Chem. 2018, 79, 122–125.
|
[53] |
Long, G.Q.; Wang, D.D.; Wang, J.; Jia, J.M.; Wang, A.H. Chemical constituents of Sophora flavescens Ait. and cytotoxic activities of two new compounds. Nat. Prod. Res. 2022, 36, 108–113.
|
[54] |
Long, G.Q.; Hu, G.S.; Gao, X.X.; Jia, J.M.; Wang, A.H. Sophoranone A and B: two new cytotoxic prenylated metabolites and their analogs from the root bark of Sophora flavescens. Nat. Prod. Res. 2022, 36, 1515–1521.
|
[55] |
Hatayama, K.; Komatsu, M. Studies on the constituents of Sophora species. V. constituents of the root of Sophora angustifolia SIEB. et ZUCC. (2). Chem. Pharm. Bull. 1971, 19, 2126–2131.
|
[56] |
Ding, P.L.; Chen, D.F.; Bastow, K.; Nyarko, A.; Wang, X.H.; Lee, K.H. Cytotoxic isoprenylated flavonoids from the roots of Sophora flavescens. Helv. Chim. Acta. 2004, 87, 2574–2580.
|
[57] |
Komatsu, M.; Tomimori, T.; Hatayama, K.; Mikuriya, N. Studies on the constituents of Sophora species. IV. Constituents of the root of Sophora angustifolia Sieb. et Zucc. Yakugaku Zasshi. 1970, 90, 463–468.
|
[58] |
Chen, H.; Yang, J.; Hao, J.; Lv, Y.; Chen, L.; Lin, Q.; Yuan, J.; Yang, X. A novel flavonoid kushenol Z from Sophora flavescens mediates mTOR pathway by inhibiting phosphodiesterase and Akt activity to induce apoptosis in non-small-cell lung cancer cells. Molecules. 2019, 24, E4425.
|
[59] |
Jung, H.A.; Jeong, D.M.; Chung, H.Y.; Lim, H.A.; Kim, J.Y.; Yoon, N.Y.; Choi, J.S. re-evaluation of the antioxidant prenylated flavonoids from the roots of Sophora flavescens. Biol. Pharm. Bull. 2008, 31, 908–915.
|
[60] |
Woo, E.R.; Kwak, J.H.; Kim, H.J.; Park, H. A new prenylated flavonol from the roots of Sophora flavescens. J. Nat. Prod. 1998, 61, 1552–1554.
|
[61] |
Ding, P.L.; Hou, A.J.; Chen, D.F. Three new isoprenylated flavonoids from the roots of Sophora flavescens. J. Asian Nat. Prod. Res. 2005, 7, 237–243.
|
[62] |
Yan, H.W.; Zhu, H.; Yuan, X.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Eight new biflavonoids with lavandulyl units from the roots of Sophora flavescens and their inhibitory effect on PTP1B. Bioorg. Chem. 2019, 86, 679–685.
|
[63] |
Kumar, S.; Prajapati, K.S.; Shuaib, M.; Kushwaha, P.P.; Tuli, H.S.; Singh, A.K. Five-decade update on chemopreventive and other pharmacological potential of kurarinone: a natural flavanone. Front. Pharmacol. 2021, 12, 737137.
|
[64] |
Kim, Y.K.; Min, B.S.; Bae, K.H. A cytotoxic constituent from Sophora flavescens. Arch. Pharm. Res. 1997, 20, 342–345.
|
[65] |
Kang, T.H.; Jeong, S.J.; Ko, W.G.; Kim, N.Y.; Lee, B.H.; Inagaki, M.; Miyamoto, T.; Higuchi, R.; Kim, Y.C. Cytotoxic lavandulyl flavanones from Sophora flavescens. J. Nat. Prod. 2000, 63, 680–681.
|
[66] |
De Naeyer, A.; Vanden Berghe, W.; Pocock, V.; Milligan, S.; Haegeman, G.; De Keukeleire, D. Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl flavanone from the roots of Sophora flavescens. J. Nat. Prod. 2004, 67, 1829–1832.
|
[67] |
Berghe, W.V.; De Naeyer, A.; Dijsselbloem, N.; David, J.P.; De Keukeleire, D.; Haegeman, G. Attenuation of ERK/RSK2-driven NFκB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens Ait. roots. Endocr. Metab. Immune Disord. Drug Targets. 2011, 11, 247–261.
|
[68] |
Yang, J.; Chen, H.; Wang, Q.; Deng, S.; Huang, M.; Ma, X.; Song, P.; Du, J.; Huang, Y.; Wen, Y.; Ren, Y.; Yang, X. Inhibitory effect of kurarinone on growth of human non-small cell lung cancer: an experimental study both in vitro and in vivo studies. Front. Pharmacol. 2018, 9, 252.
|
[69] |
Ryu, S.Y.; Choi, S.U.; Kim, S.K.; No, Z.; Lee, C.O.; Ahn, J.W.; Kim, S.H. In vitro antitumour activity of flavonoids from Sophora flavescens. Phytother. Res. 1997, 11, 51–53.
|
[70] |
Ko, W.G.; Kang, T.H.; Kim, N.Y.; Lee, S.J.; Kim, Y.C.; Ko, G.I.; Ryu, S.Y.; Lee, B.H. Lavandulylflavonoids: A new class of in vitro apoptogenic agents from Sophora flavescens. Toxicol. Vitro. 2000, 14, 429–433.
|
[71] |
Han, J.; Sun, M.; Cui, Y.; Wang, T.; Zhang, W.; Guo, M.; Zhou, Y.; Liu, W.; Zhang, M.; Duan, J.; Xiong, S.; Yao, M.; Yan, X. Kushen flavonoids induce apoptosis in tumor cells by inhibition of NF-κB activation and multiple receptor tyrosine kinase activities. Phytother. Res. 2007, 21, 262–268.
|
[72] |
Seo, O.W.; Kim, J.H.; Lee, K.S.; Lee, K.S.; Kim, J.H.; Won, M.H.; Ha, K.S.; Kwon, Y.G.; Kim, Y.M. Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-κB-dependent cFLIP expression in HeLa cells. Exp. Mol. Med. 2012, 44, 653–664.
|
[73] |
Chung, T.W.; Lin, C.C.; Lin, S.C.; Chan, H.L.; Yang, C.C. Antitumor effect of kurarinone and underlying mechanism in small cell lung carcinoma cells. Onco Targets Ther. 2019, 12, 6119–6131.
|
[74] |
Nishikawa, S.; Itoh, Y.; Tokugawa, M.; Inoue, Y.; Nakashima, K.I.; Hori, Y.; Miyajima, C.; Yoshida, K.; Morishita, D.; Ohoka, N.; Inoue, M.; Mizukami, H.; Makino, T.; Hayashi, H. Kurarinone from Sophora flavescens roots triggers ATF4 activation and cytostatic effects through PERK phosphorylation. Molecules. 2019, 24, E3110.
|
[75] |
Zhou, W.; Cao, A.; Wang, L.; Wu, D. Kurarinone synergizes TRAIL-induced apoptosis in gastric cancer cells. Cell Biochem. Biophys. 2015, 72, 241–249.
|
[76] |
Kwon, M.; Oh, T.; Jang, M.; Kim, G.H.; Kim, J.H.; Ryu, H.W.; Oh, S.R.; Jang, J.H.; Ahn, J.S.; Ko, S.K. Kurarinone induced p53-Independent G0/G1 cell cycle arrest by degradation of K-RAS via WDR76 in human colorectal cancer cells. Eur. J. Pharmacol. 2022, 923, 174938.
|
[77] |
Cha, J.D.; Jeong, M.R.; Lee, Y.E.; Lee, K.Y. Induction of apoptosis in human oral epidermoid carcinoma cells by sophoraflavanone G from Sophora flavescens. Food Sci. Biotechnol. 2007, 16, 537–542.
|
[78] |
Kim, B.H.; Won, C.; Lee, Y.H.; Choi, J.S.; Noh, KH; Han, S.; Lee, H.; Lee, C.S.; Lee, D.S.; Ye, S.K.; Kim, M.H. Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs. Biochem. Pharmacol. 2013, 86, 950–959.
|
[79] |
Li, Z.Y.; Huang, W.C.; Tu, R.S.; Gu, P.Y.; Lin, C.F.; Liou, C.J. Sophoraflavanone G induces apoptosis in human leukemia cells and blocks MAPK activation. Am. J. Chin. Med. 2016, 44, 165–176.
|
[80] |
Huang, W.C.; Gu, PY; Fang, L.W.; Huang, Y.L.; Lin, C.F.; Liou, C.J. Sophoraflavanone G from Sophora flavescens induces apoptosis in triple-negative breast cancer cells. Phytomedicine. 2019, 61, 152852.
|
[81] |
Wu, C.P.; Li, Y.Q.; Hung, T.H.; Chang, Y.T.; Huang, Y.H.; Wu, Y.S. Sophoraflavanone G resensitizes ABCG2-overexpressing multidrug-resistant non-small-cell lung cancer cells to chemotherapeutic drugs. J. Nat. Prod. 2021, 84, 2544–2553.
|
[82] |
Kang, C.W.; Kim, N.H.; Jung, H.A.; Choi, H.W.; Kang, M.J.; Choi, J.S.; Kim, G.D. Desmethylanhydroicaritin isolated from Sophora flavescens shows antitumor activities in U87MG cells via inhibiting the proliferation, migration and invasion. Environ. Toxicol. Pharmacol. 2016, 43, 140–148.
|
[83] |
Rasul, A.; Yu, B.; Yang, L.F.; Ali, M.; Khan, M.; Ma, T.; Yang, H. Induction of mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells by kuraridin and nor-kurarinone isolated from Sophora flavescens. Asian Pac. J. Cancer Prev. 2011, 12, 2499–2504.
|
[84] |
Shu, G.; Yang, J.; Zhao, W.; Xu, C.; Hong, Z.; Mei, Z.; Yang, X. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling. Toxicol. Appl. Pharmacol. 2014, 281, 157–165.
|
[85] |
Chen, H.; Yang, J.; Hao, J.; Lv, Y.; Chen, L.; Lin, Q.; Yuan, J.; Yang, X. A novel flavonoid kushenol Z from Sophora flavescens mediates mTOR pathway by inhibiting phosphodiesterase and Akt activity to induce apoptosis in non-small-cell lung cancer cells. Molecules. 2019, 24, E4425.
|
[86] |
Cheung, C.S.; Chung, K.K.; Lui, J.C.; Lau, C.P.; Hon, P.M.; Chan, J.Y.; Fung, K.P.; Au, S.W. Leachianone A as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. Cancer Lett. 2007, 253, 224–235.
|
[87] |
Jung, H.A.; Jin, S.E.; Choi, R.J.; Manh, H.T.; Kim, Y.S.; Min, B.S.; Son, Y.K.; Ahn, B.R.; Kim, B.W.; Sohn, H.S.; Choi, J.S. Anti-tumorigenic activity of sophoflavescenol against Lewis lung carcinoma in vitro and in vivo. Arch. Pharm. Res. 2011, 34, 2087–2099.
|
[88] |
Zhou, H.; Lutterodt, H.; Cheng, Z.; Yu, L.L. Anti-Inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots. J. Agric. Food Chem. 2009, 57, 4580–4585.
|
[1] | Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. Matrine, oxymatrine, and compound Kushen injection from the roots of Sophora flavescens: an overview of their anticancer activities[J]. 中国药学(英文版), 2022, 31(5): 321-333. |
[2] | Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. Genipin and geniposide from Gardenia jasminoides: An overview of their anti-cancer and other pharmacological properties[J]. 中国药学(英文版), 2022, 31(1): 1-12. |
[3] | Aris Stiawan, Eti Nurwening Sholikhah, Yehezkiel Steven Kurniawan, Yoga Priastomo, Jumina. Synthesis, cytotoxicity assay, and molecular docking study of hydroxychalcone derivatives as potential tyrosinase inhibitors[J]. 中国药学(英文版), 2021, 30(8): 634-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||