中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (5): 321-333.DOI: 10.5246/jcps.2022.05.028
• 【综 述】 • 下一篇
Eric Wei Chiang Chan1,*(), Siu Kuin Wong2, Hung Tuck Chan3
收稿日期:
2021-12-14
修回日期:
2022-01-24
接受日期:
2022-02-12
出版日期:
2022-06-02
发布日期:
2022-06-02
通讯作者:
Eric Wei Chiang Chan
作者简介:
Eric Wei Chiang Chan1,*(), Siu Kuin Wong2, Hung Tuck Chan3
Received:
2021-12-14
Revised:
2022-01-24
Accepted:
2022-02-12
Online:
2022-06-02
Published:
2022-06-02
Contact:
Eric Wei Chiang Chan
About author:
Dr Eric Wei Chiang CHAN, Associate Professor at the Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia, obtained his PhD (Natural Product Chemistry) from Monash University Malaysia in 2009. Dr Eric Chan has 93 publications in international refereed journals with 64 (7 in JCPS) as the lead author. His publications have received more than 2078 citations in Scopus, and 4150 citations in Google Scholar. Dr Eric Chan was one of the Top 5 Competitors of the Elsevier Green and Sustainable Chemistry Challenge 2015, out of 500 proposals submitted globally. In April 2016, he presented his proposal at the Green and Sustainable Chemistry Conference in Berlin, Germany. Dr Eric Chan's citations were ranked top 2% in the world (Pharmacology and Pharmacy) by a University of Stanford Report in 2020 and 2021. He was the Project Overseer of the APEC Sustainable Coastal Cities Symposium in November 2021. |
Dr Siu Kuin WONG, Lecturer, School of Foundation Studies, Xiamen University Malaysia, Sepang, Selangor, obtained her PhD (Natural Product Chemistry) from Monash University Malaysia in 2013. Dr Wong has publications in 46 international refereed journals with 7 papers in JCPS. She has 1223 citations in Scopus, and 2309 citations in Google Scholar. |
摘要:
In the present review, we updated current information on the chemistry, contents, and anticancer properties of matrine (MT), oxymatrine (OMT), and compound Kushen injection (CKI). The anticancer properties were focused on lung, breast, and liver cancer cells because they are most susceptible. Sources of information were from Google, Google Scholar, PubMed, PubMed Central, Science Direct, PubChem, J-Stage, Directory of Open Access Journals (DOAJ), and China National Knowledge Infrastructure (CNKI). Reference was also made on botanical websites, such as Flora of China and World Flora Online. MT and OMT are dominant quinolizidine alkaloids from the roots of Sophora flavescens (Kushen) of the family Fabaceae. Against lung, breast, and liver cancer cells, MT and OMT inhibit cell proliferation; induce cell cycle arrest, apoptosis, and autophagy; restrict angiogenesis; and inhibit cell metastasis, invasion, and migration. The processes involve various molecular targets and signaling pathways. CKI is a traditional Chinese medicine (TCM) composed of root extracts of S. flavescens and Smilax glabra (Baituling) of the family Smilacaceae. With MT and OMT as major components, CKI has been approved for the treatment of cancer in China more than 20 years ago. In recent years, systematic reviews and meta-analysis have been undertaken to evaluate the anticancer effects of CKI. When CKI is used alone and in combination with chemotherapy of western medicine, there is much to be learned concerning their interactions besides their individual and integrated efficacy. Some perspectives of MT, OMT, and CKI are discussed, and their suggestions for future research are provided.
Supporting:
Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. Matrine, oxymatrine, and compound Kushen injection from the roots of Sophora flavescens: an overview of their anticancer activities[J]. 中国药学(英文版), 2022, 31(5): 321-333.
Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. Matrine, oxymatrine, and compound Kushen injection from the roots of Sophora flavescens: an overview of their anticancer activities[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(5): 321-333.
Figure 1. Chemical structures of MT (left) and OMT (right), showing the quinolizidine nucleus (circle 1?10) and pyridine nucleus (circle 12?17) of MT.
Table 1. Anticancer effects and molecular mechanisms of MT towards other cancer cells.
Table 2. Anticancer effects and molecular mechanisms of OMT towards other cancer cells.
[1] |
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 2014, 44, 377–386.
|
[2] |
Aniszewski, T. Alkaloids. Second ed. Chemistry, Biology, Ecology and Applications. Elsevier. 2015, 496.
|
[3] |
Bunsupa, S.; Yamazaki, M.; Saito, K. Quinolizidine alkaloid biosynthesis: recent advances and future prospects. Front. Plant Sci. 2012, 3, 239.
|
[4] |
Lin, Z.; Huang, C.F.; Liu, X.S.; Jiang, J.K. In vitro anti-tumour activities of quinolizidine alkaloids derived from Sophora flavescens Ait. Basic Clin. Pharmacol. Toxicol. 2011, 108, 304–309.
|
[5] |
Li, R.L.; Zhang, Q.; Liu, J.; He, L.Y.; Huang, Q.W.; Peng, W.; Wu, C.J. Processing methods and mechanisms for alkaloid-rich Chinese herbal medicines: a review. J. Integr. Med. 2021, 19, 89–103.
|
[6] |
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.
|
[7] |
Miranda-Filho, A.; Piñeros, M.; Bray, F. The descriptive epidemiology of lung cancer and tobacco control: a global overview 2018. Salud Publica De Mex. 2019, 61, 219.
|
[8] |
Furrukh, M. Tobacco smoking and lung cancer: perception-changing facts. Sultan Qaboos Univ. Med. J. 2013, 13, 345–358.
|
[9] |
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA: Cancer J. Clin. 2019, 69, 7‒34.
|
[10] |
Cao, X.; He, Q. Anti-tumor activities of bioactive phytochemicals in Sophora flavescens for breast cancer. Cancer Manag. Res. 2020, 12, 1457–1467.
|
[11] |
He, X.R.; Fang, J.C.; Huang, L.H.; Wang, J.H.; Huang, X.Q. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2015, 172, 10–29.
|
[12] |
Krishna, P.M.; Knv, R.; Sandhya, S.; Banji, D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Farmacogn. 2012, 22, 1145–1154.
|
[13] |
Sun, M.; Cao, H.; Sun, L.; Dong, S.; Bian, Y.; Han, J.; Zhang, L.; Ren, S.; Hu, Y.; Liu, C.; Xu, L. Anti-tumor activities of Kushen: literature review. Evid Based. Complement. Alternat. Med. 2012, Article ID 373219.
|
[14] |
Li, K.; Wang, H.J. Simultaneous determination of matrine, sophoridine and oxymatrine in Sophora flavescens Ait. by high performance liquid chromatography. Biomed. Chromatogr. 2004, 18, 178–182.
|
[15] |
Yu, Y.Q.; Ding, P.L.; Chen, D.F. Determination of quinolizidine alkaloids in Sophora medicinal plants by capillary electrophoresis. Anal. Chimica Acta. 2004, 523, 15–20.
|
[16] |
Wang, X.K.; Li, J.S.; Omiya, S.; Wei, L.X. The alkaloid constituents in the seeds of Sophora viciifolia. J. Chin. Pharm. Sci. 1995, 4, 154–156.
|
[17] |
Liu, X.J.; Cao, M.A.; Li, W.H.; Shen, C.S.; Yan, S.Q.; Yuan, C.S. Alkaloids from Sophora flavescens Aiton. Fitoterapia. 2010, 81, 524–527.
|
[18] |
Liu, Y.; Xu, Y.; Ji, W.D.; Li, X.Y.; Sun, B.; Gao, Q.G.; Su, C.Q. Anti-tumor activities of matrine and oxymatrine: literature review. Tumor Biol. 2014, 35, 5111–5119.
|
[19] |
Rashid, H.U.; Xu, Y.M.; Muhammad, Y.; Wang, L.S.; Jiang, J. Research advances on anticancer activities of matrine and its derivatives: an updated overview. Eur. J. Med. Chem. 2019, 161, 205–238.
|
[20] |
Guo, H.; Tan, B.; Zhang, Y.; Yang, M.; Zhou, S.; Cheng, G. Matrine leading cell inhibition and apoptosis in A549 cells. J. Pharm. Biomed. Sci. 2017, 7, 160–164.
|
[21] |
Zhang, Y.; Zhang, H.; Yu, P.F.; Liu, Q.; Liu, K.; Duan, H.Y.; Luan, G.; Yagasaki, K.; Zhang, G.Y. Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology. 2009, 59, 191–200.
|
[22] |
Tan, C.H.; Qian, X.Q.; Jia, R.D.; Wu, M.; Liang, Z.Q. Matrine induction of reactive oxygen species activates p38 leading to caspase-dependent cell apoptosis in non-small cell lung cancer cells. Oncol. Rep. 2013, 30, 2529–2535.
|
[23] |
Niu, H.Y.; Zhang, Y.F.; Wu, B.G.; Zhang, Y.; Jiang, H.F.; He, P. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway. Oncol. Rep. 2014, 32, 1087–1093.
|
[24] |
Wang, H.Q.; Jin, J.J.; Wang, J. Matrine induces mitochondrial apoptosis in cisplatin-resistant non-small cell lung cancer cells via suppression of β-catenin/survivin signaling. Oncol. Rep. 2015, 33, 2561–2566.
|
[25] |
Izdebska, M.; Zielińska, W.; Hałas-Wiśniewska, M.; Mikołajczyk, K.; Grzanka, A. The cytotoxic effect of oxymatrine on basic cellular processes of A549 non-small lung cancer cells. Acta Histochem. 2019, 121, 724–731.
|
[26] |
Wang, B.; Han, Q.; Zhu, Y. Oxymatrine inhibited cell proliferation by inducing apoptosis in human lung cancer A549 cells. Bio Med. Mater. Eng. 2015, 26, S165–S172.
|
[27] |
Li, W.; Yu, X.F.; Tan, S.M.; Liu, W.B.; Zhou, L.; Liu, H.D. Oxymatrine inhibits non-small cell lung cancer via suppression of EGFR signaling pathway. Cancer Med. 2018, 7, 208–218.
|
[28] |
Jung, Y.Y.; Shanmugam, M.K.; Narula, A.S.; Kim, C.; Lee, J.H.; Namjoshi, O.A.; Blough, B.E.; Sethi, G.; Ahn, K.S. Oxymatrine attenuates tumor growth and deactivates STAT5 signaling in a lung cancer xenograft model. Cancers. 2019, 11, 49.
|
[29] |
Zhu, H.; Lu, Q.; Lu, Q.; Shen, X.; Yu, L. Matrine regulates proliferation, apoptosis, cell cycle, migration, and invasion of non-small cell lung cancer cells through the circFUT8/miR-944/YES1 axis. Cancer Manag. Res. 2021, 13, 3429–3442.
|
[30] |
Li, L.Q.; Li, X.L.; Wang, L.; Du, W.J.; Guo, R.; Liang, H.H.; Liu, X.; Liang, D.S.; Lu, Y.J.; Shan, H.L.; Jiang, H.C. Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cell Physiol. Biochem. 2012, 30, 631–641.
|
[31] |
Yu, P.F.; Liu, Q.; Liu, K.; Yagasaki, K.; Wu, E.X.; Zhang, G.Y. Matrine suppresses breast cancer cell proliferation and invasion via VEGF-Akt-NF-κB signaling. Cytotechnology. 2009, 59, 219–229.
|
[32] |
Li, H.; Li, X.; Bai, M.; Suo, Y.; Zhang, G.; Cao, X. Matrine inhibited proliferation and increased apoptosis in human breast cancer MCF-7 cells via upregulation of Bax and downregulation of Bcl-2. Int. J. Clin. Exp. Pathol. 2015, 8, 14793–14799.
|
[33] |
Shao, H.; Yang, B.; Hu, R.; Wang, Y. Matrine effectively inhibits the proliferation of breast cancer cells through a mechanism related to the NF-κB signaling pathway. Oncol. Lett. 2013, 6, 517–520.
|
[34] |
Zhou, B.G.; Wei, C.S.; Zhang, S.; Zhang, Z.; Gao, H.M. Matrine reversed multidrug resistance of breast cancer MCF-7/ADR cells through PI3K/AKT signaling pathway. J. Cell Biochem. 2018, 119, 3885–3891.
|
[35] |
Xie, W.; Zhang, Y.; Zhang, S.; Wang, F.; Zhang, K.; Huang, Y.; Zhou, Z.; Huang, G.; Wang, J. Oxymatrine enhanced anti-tumor effects of Bevacizumab against triple-negative breast cancer via abating Wnt/β-Catenin signaling pathway. Am. J. Cancer Res. 2019, 9, 1796–1814.
|
[36] |
Zhang, Y.; Piao, B.K.; Zhang, Y.; Hua, B.J.; Hou, W.; Xu, W.R.; Qi, X.; Zhu, X.Y.; Pei, Y.X.; Lin, H.S. Oxymatrine diminishes the side population and inhibits the expression of β-catenin in MCF-7 breast cancer cells. Med. Oncol. 2011, 28, 99–107.
|
[37] |
Lin, B.; Li, D.; Zhang, L. Oxymatrine mediates Bax and Bcl-2 expression in human breast cancer MCF-7 cells. Die Pharmazie. 2016, 71, 154–157.
|
[38] |
Wu, J.; Cai, Y.; Li, M.L.; Zhang, Y.J.; Li, H.F.; Tan, Z.J. Oxymatrine promotes S-phase arrest and inhibits cell proliferation of human breast cancer cells in vitro through mitochondria-mediated apoptosis. Biol. Pharm. Bull. 2017, 40, 1232–1239.
|
[39] |
Chen, Y.; Chen, L.; Zhang, J.Y.; Chen, Z.Y.; Liu, T.T.; Zhang, Y.Y.; Fu, L.Y.; Fan, S.Q.; Zhang, M.Q.; Gan, S.Q.; Zhang, N.L.; Shen, X.C. Oxymatrine reverses epithelial-mesenchymal transition in breast cancer cells by depressing αⅤβ3 integrin/FAK/PI3K/Akt signaling activation. Oncotargets Ther. 2019, 12, 6253–6265.
|
[40] |
Guo, L.; Yang, T. Oxymatrine inhibits the proliferation and invasion of breast cancer cells via the PI3K pathway. Cancer Manag. Res. 2019, 11, 10499–10508.
|
[41] |
Ma, L.D.; Wen, S.H.; Zhan, Y.; He, Y.J.; Liu, X.S.; Jiang, J.K. Anticancer effects of the Chinese medicine matrine on murine hepatocellular carcinoma cells. Planta Med. 2008, 74, 245–251.
|
[42] |
Wang, L.; Gao, C.; Yao, S.; Xie, B. Blocking autophagic flux enhances matrine-induced apoptosis in human hepatoma cells. Int. J. Mol. Sci. 2013, 14, 23212–23230.
|
[43] |
Liu, Y.; Qi, Y.; Bai, Z.H.; Ni, C.X.; Ren, Q.H.; Xu, W.H.; Xu, J.; Hu, H.G.; Qiu, L.; Li, J.Z.; He, Z.G.; Zhang, J.P. A novel matrine derivate inhibits differentiated human hepatoma cells and hepatic cancer stem-like cells by suppressing PI3K/AKT signaling pathways. Acta Pharmacol. Sin. 2017, 38, 120–132.
|
[44] |
Sun, X.; Zhuo, X.B.; Hu, Y.P.; Zheng, X.; Zhao, Q.J. A novel matrine derivative WM622 inhibits hepatocellular carcinoma by inhibiting PI3K/AKT signaling pathways. Mol. Cell Biochem. 2018, 449, 47–54.
|
[45] |
Qian, L.Q.; Liu, Y.; Xu, Y.; Ji, W.D.; Wu, Q.Y.; Liu, Y.J.; Gao, Q.G.; Su, C.Q. Matrine derivative WM130 inhibits hepatocellular carcinoma by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Cancer Lett. 2015, 368, 126–134.
|
[46] |
Xie, S.B.; He, X.X.; Yao, S.K. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells. Int. J. Oncol. 2015, 47, 517–526.
|
[47] |
Yu, H.B.; Zhang, H.F.; Li, D.Y.; Zhang, X.; Xue, H.Z.; Zhao, S.H. Matrine inhibits matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells. J. Asian Nat. Prod. Res. 2011, 13, 242–250.
|
[48] |
Song, G.B.; Luo, Q.; Qin, J.; Wang, L.; Shi, Y.S.; Sun, C.X. Effects of oxymatrine on proliferation and apoptosis in human hepatoma cells. Colloids Surf. B Biointerfaces 2006, 48, 1–5.
|
[49] |
Chen, K.; Zhu, P.; Ye, J.; Liao, Y.; Du, Z.; Chen, F.; Juanjuan, H.; Zhang, S.; Zhai, W. Oxymatrine inhibits the migration and invasion of hepatocellular carcinoma cells by reducing the activity of MMP-2/-9 via regulating p38 signaling pathway. J. Cancer. 2019, 10, 5397–5403.
|
[50] |
Hu, G.Y.; Cao, C.; Deng, Z.H.; Li, J.; Zhou, X.H.; Huang, Z.S.; Cen, C. Effects of matrine in combination with cisplatin on liver cancer. Oncol. Lett. 2021, 21, 66.
|
[51] |
Dai, M.Q.; Chen, N.N.; Li, J.Z.; Tan, L.Z.; Li, X.J.; Wen, J.Y.; Lei, L.S.; Guo, D. In vitro and in vivo anti-metastatic effect of the alkaloid matrine from Sophora flavecens on hepatocellular carcinoma and its mechanisms. Phytomedicine. 2021, 87, 153580.
|
[52] |
Pu, Z.; Wang, Y.; Ge, F.; Zhu, S.; Cheng, Y.; Liu, H.; Dai, Q.; Hua, H. Matrine induces cell cycle arrest and apoptosis in hepatocellular carcinoma cells via miR-122 mediated CG1/livin/survivin signal axis. Trop. J. Pharm. Res. 2021, 20, 263‒268.
|
[53] |
Zhang, J.Q.; Li, Y.M.; Liu, T.; He, W.T.; Chen, Y.T.; Chen, X.H.; Li, X.; Zhou, W.C.; Yi, J.F.; Ren, Z.J. Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy. World J. Gastroenterol. 2010, 16, 4281–4290.
|
[54] |
Chang, C.; Liu, S.P.; Fang, C.H.; He, R.S.; Wang, Z.; Zhu, Y.Q.; Jiang, S.W. Effects of matrine on the proliferation of HT29 human colon cancer cells and its antitumor mechanism. Oncol. Lett. 2013, 6, 699–704.
|
[55] |
Zhang, Z.P.; Wang, X.F.; Wu, W.G.; Wang, J.W.; Wang, Y.; Wu, X.S.; Fei, X.Z.; Li, S.G.; Zhang, J.; Dong, P.; Gu, J.; Liu, Y.B. Effects of matrine on proliferation and apoptosis in gallbladder carcinoma cells (GBC-SD). Phytother. Res. 2012, 26, 932–937.
|
[56] |
Luo, C.; Zhong, H.J.; Zhu, L.M.; Wu, X.G.; Ying, J.E.; Wang, X.H.; Lü, W.X.; Xu, Q.; Zhu, Y.L.; Huang, J. Inhibition of matrine against gastric cancer cell line MNK45 growth and its anti-tumor mechanism. Mol. Biol. Rep. 2012, 39, 5459–5464.
|
[57] |
Liu, Z.M.; Yang, X.L.; Jiang, F.; Pan, Y.C.; Zhang, L. Matrine involves in the progression of gastric cancer through inhibiting miR-93-5p and upregulating the expression of target gene AHNAK. J. Cell. Biochem. 2020, 121, 2467–2477.
|
[58] |
Zhang, S.; Zhang, Y.; Zhuang, Y.; Wang, J.; Ye, J.; Zhang, S.; Wu, J.; Yu, K.; Han, Y. Matrine induces apoptosis in human acute myeloid leukemia cells via the mitochondrial pathway and Akt inactivation. PLoS One. 2012, 7, e46853.
|
[59] |
Lv, J.; Xu, L.; Wang, Z.; Ma, R.; Li, Q.; Zheng, M.; Li, M.; Chen, H.; Yu, H.; Liu, J. Effects of matrine on the proliferation and apoptosis of myeloma RPMI 8226 cells. Int. J. Clin. Exper. Pathol. 2016, 9, 6501‒6505.
|
[60] |
Zhang, X.; Hou, G.Q.; Liu, A.D.; Xu, H.; Guan, Y.; Wu, Y.S.; Deng, J.; Cao, X. Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways. Cell Death Dis. 2019, 10, 770.
|
[61] |
Liang, X.; Ju, J.X. Matrine inhibits ovarian cancer cell viability and promotes apoptosis by regulating the ERK/JNK signaling pathway via p38MAPK. Oncol. Rep. 2021, 45, 82.
|
[62] |
Liu, T.; Song, Y.; Chen, H.; Pan, S.; Sun, X. Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol. Pharm. Bull. 2010, 33, 1740–1745.
|
[63] |
Li, Q.; Lai, Y.; Wang, C.; Xu, G.; He, Z.; Shang, X.; Sun, Y.; Zhang, F.; Liu, L.; Huang, H. Matrine inhibits the proliferation, invasion and migration of castration-resistant prostate cancer cells through regulation of the NF-κB signaling pathway. Oncol. Rep. 2016, 35, 375–381.
|
[64] |
Zhao, L.; Zhang, X.; Cui, S. Matrine inhibits TPC-1 human thyroid cancer cells via the miR-21/PTEN/Akt pathway. Oncol. Lett. 2018, 16, 2965–2970.
|
[65] |
Fu, S.B.; Zhao, N.; Jing, G.J.; Yang, X.M.; Liu, J.F.; Zhen, D.H.; Tang, X.L. Matrine induces papillary thyroid cancer cell apoptosis in vitro and suppresses tumor growth in vivo by downregulating miR-182-5p. Biomed. Pharmacother. 2020, 128, 110327.
|
[66] |
Gu, J.; Wang, X.; Zhang, L.; Xiang, J.; Li, J.; Chen, Z.; Zhang, Y.; Chen, J.; Shen, J. Matrine suppresses cell growth of diffuse large B-cell lymphoma via inhibiting CaMKIIγ/c-Myc/CDK6 signaling pathway. BMC Complement. Med. Ther. 2021, 21, 163.
|
[67] |
Li, S.; Zhang, Y.; Liu, Q.; Zhao, Q.; Xu, L.; Huang, S.; Huang, S.; Wei, X. Oxymatrine inhibits proliferation of human bladder cancer T24 cells by inducing apoptosis and cell cycle arrest. Oncol. Lett. 2017, 13, 4453–4458.
|
[68] |
Zou, J.; Ran, Z.H.; Xu, Q.; Xiao, S.D. Experimental study of the killing effects of oxymatrine on human colon cancer cell line SW1116. Chin. J. Dig. Dis. 2005, 6, 15–20.
|
[69] |
Li, X.P.; Sun, J.; Xu, Q.H.; Duan, W.P.; Yang, L.C.; Wu, X.; Lu, G.; Zhang, L.; Zheng, Y.F. Oxymatrine inhibits colorectal cancer metastasis via attenuating PKM2-mediated aerobic glycolysis. Cancer Manag. Res. 2020, 12, 9503–9513.
|
[70] |
Liang, L.; Wu, J.; Luo, J.; Wang, L.; Chen, Z.; Han, C.; Gan, T.; Huang, J.; Cai, Z. Oxymatrine reverses 5‑fluorouracil resistance by inhibition of colon cancer cell epithelial‑mesenchymal transition and NF‑κB signaling in vitro. Oncol. Lett. 2019, 9, 519‒526.
|
[71] |
Hua, S.; Gu, M.; Wang, Y.; Ban, D.; Ji, H. Oxymatrine reduces expression of programmed death-ligand 1 by promoting DNA demethylation in colorectal cancer cells. Clin. Transl. Oncol. 2021, 23, 750–756.
|
[72] |
Qian, L.; Li, X.; Ye, P.; Wang, G.; Dai, W.; Liu, Y.; Gao, Q.; Shen, G. Oxymatrine induces apoptosis and inhibits invasion in gallbladder carcinoma via PTEN/PI3K/AKT pathway. Cytotechnology. 2018, 70, 83–94.
|
[73] |
Huang, Y.X.; Zhang, J.; Wang, G.; Chen, X.Y.; Zhang, R.; Liu, H.; Zhu, J.S. Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21R-mediated JAK2/STAT3 pathway. Int. J. Immunopathol. Pharmacol. 2018, https://doi.org/10.1177/2058738418781634.
|
[74] |
Liu, F.L.; Wang, B.C.; Wang, J.J.; Ling, X.Z.; Li, Q.F.; Meng, W.; Ma, J. Oxymatrine inhibits proliferation and migration while inducing apoptosis in human glioblastoma cells. Biomed Res. Int. 2016, 2016, 1–7.
|
[75] |
Liu, J.; Yao, Y.Z.; Ding, H.F.; Chen, R.N. Oxymatrine triggers apoptosis by regulating Bcl-2 family proteins and activating caspase-3/caspase-9 pathway in human leukemia HL-60 cells. Tumor Biol. 2014, 35, 5409–5415.
|
[76] |
Zhang, Y.; Sun, S.G.; Chen, J.; Ren, P.C.; Hu, Y.S.; Cao, Z.; Sun, H.H.; Ding, Y. Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol. 2014, 35, 1619–1625.
|
[77] |
Chen, H.; Zhang, J.; Luo, J.; Lai, F.; Wang, Z.; Tong, H.; Lu, D.; Bu, H.; Zhang, R.; Lin, S. Antiangiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol. Rep. 2013, 30, 589–595.
|
[78] |
Wu, C.; Huang, W.; Guo, Y.; Xia, P.; Sun, X.; Pan, X.; Hu, W. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo. Mol. Med. Rep. 2015, 11, 4129–4134.
|
[79] |
Guo, Y.M.; Huang, Y.X.; Shen, H.H.; Sang, X.X.; Ma, X.; Zhao, Y.L.; Xiao, X.H. Efficacy of compound Kushen injection in relieving cancer-related pain: a systematic review and meta-analysis. Evid. Based Complement. Altern. Med. 2015, 2015, 840742.
|
[80] |
Jia, L.B.; Lin, H.S.; Oppenheim, J.; Howard, O.M.Z.; Li, J.; Fan, H.T.; Zhao, Z.Z.; Farrar, W.; Zhang, Y.; Colburn, N.; Young, M.R.; Li, W.D.; Newman, D.; O’Keefe, B.R.; Beutler, J.; Liu, J.K.; Hao, X.J.; Yang, X.S.; Ji, T.F.; White, J.D. US national cancer institute-China collaborative studies on Chinese medicine and cancer. J. Nat. Cancer Inst. Monogr. 2017, 2017, lgx007.
|
[81] |
Cui, J.; Qu, Z.; Harata-Lee, Y.; Shen, H.; Aung, T.N.; Wang, W.; Kortschak, R.D.; Adelson, D.L. The effect of compound Kushen injection on cancer cells: Integrated identification of candidate molecular mechanisms. PLoS One. 2020, 15, e0236395.
|
[82] |
Gao, L.; Wang, K.X.; Zhou, Y.Z.; Fang, J.S.; Qin, X.M.; Du, G.H. Uncovering the anticancer mechanism of Compound Kushen Injection against HCC by integrating quantitative analysis, network analysis and experimental validation. Sci. Rep. 2018, 8, 624.
|
[83] |
Zhao, Z.Z.; Fan, H.T.; Higgins, T.; Qi, J.; Haines, D.; Trivett, A.; Oppenheim, J.J.; Wei, H.; Li, J.; Lin, H.S.; Howard, O.M.Z. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways. Cancer Lett. 2014, 355, 232–241.
|
[84] |
Wang, W.; You, R.L.; Qin, W.J.; Hai, L.N.; Fang, M.J.; Huang, G.H.; Kang, R.X.; Li, M.H.; Qiao, Y.F.; Li, J.W.; Li, A.P. Anti-tumor activities of active ingredients in Compound Kushen Injection. Acta Pharmacol. Sin. 2015, 36, 676–679.
|
[85] |
Nourmohammadi, S.; Aung, T.N.; Cui, J.; Pei, J.V.; De Ieso, M.L.; Harata-Lee, Y.; Qu, Z.; Adelson, D.L.; Yool, A.J. Effect of compound Kushen injection, a natural compound mixture, and its identified chemical components on migration and invasion of colon, brain, and breast cancer cell lines. Oncol. 2019, 9, 314.
|
[86] |
Qu, Z.; Cui, J.; Harata-Lee, Y.; Aung, T.N.; Feng, Q.; Raison, J.M.; Kortschak, R.D.; Adelson, D.L. Identification of candidate anti-cancer molecular mechanisms of Compound Kushen Injection using functional genomics. Oncotarget. 2016, 7, 66003–66019.
|
[87] |
Xu, W.; Lin, H.; Zhang, Y.; Chen, X.; Hua, B.; Hou, W.; Qi, X.; Pei, Y.; Zhu, X.; Zhao, Z.; Yang, L. Compound Kushen Injection suppresses human breast cancer stem-like cells by down-regulating the canonical Wnt/β-catenin pathway. J. Exp. Clin. Cancer Res. 2011, 30, 103.
|
[88] |
Wang, H.Y.; Hu, H.Y.; Rong, H.; Zhao, X.W. Effects of compound Kushen injection on pathology and angiogenesis of tumor tissues. Oncol. Lett. 2019, 17, 2278–2282.
|
[89] |
Tu, H.L.; Lei, B.; Meng, S.; Liu, H.L.; Wei, Y.C.; He, A.L.; Zhang, W.G.; Zhou, F.L. Efficacy of compound Kushen injection in combination with induction chemotherapy for treating adult patients newly diagnosed with acute leukemia. Evid. Based Complement. Altern. Med. 2016, 2016, 1–7.
|
[90] |
Ma, X.; Li, R.S.; Wang, J.; Huang, Y.Q.; Li, P.Y.; Wang, J.; Su, H.B.; Wang, R.L.; Zhang, Y.M.; Liu, H.H.; Zhang, C.E.; Ma, Z.J.; Wang, J.B.; Zhao, Y.L.; Xiao, X.H. The therapeutic efficacy and safety of compound Kushen injection combined with transarterial chemoembolization in unresectable hepatocellular carcinoma: an update systematic review and meta-analysis. Front. Pharmacol. 2016, 7, 70.
|
[91] |
Yu, L.X.; Zhou, Y.; Yang, Y.; Lu, F.R.; Fan, Y.Q. Efficacy and safety of compound Kushen injection on patients with advanced colon cancer: a meta-analysis of randomized controlled trials. Evid. Based Complement. Altern. Med. 2017, 2017, 1–9.
|
[92] |
Ao, M.; Xiao, X.; Li, Q.S. Efficacy and safety of compound Kushen injection combined with chemotherapy on postoperative patients with breast cancer. Medicine. 2019, 98, e14024.
|
[93] |
Zhou, W.; Wu, J.; Zhu, Y.; Meng, Z.; Liu, X.; Liu, S.; Ni, M.; Jia, S.; Zhang, J.; Guo, S. Study on the mechanisms of compound Kushen injection for the treatment of gastric cancer based on network pharmacology. BMC Complement. Med. Ther. 2020, 20, 6.
|
[94] |
Bao, Y.J.; Yang, L.P.; Hua, B.J.; Hou, W.; Shi, Z.; Li, W.D.; Li, C.H.; Chen, C.H.; Liu, R.; Qin, Y.G.; Lv, W. A systematic review and meta-analysis on the use of traditional Chinese medicine compound Kushen injection for bone cancer pain. Support. Care Cancer. 2014, 22, 825–836.
|
[95] |
Hao, G.Z.; Zheng, J.; Huo, R.T.; Li, J.C.; Wen, K.; Zhang, Y.S.; Liang, G.B. Smilax glabra Roxb targets Aktp-Thr308 and inhibits Akt-mediated signaling pathways in SGC7901 cells. J. Drug Target. 2016, 24, 557–565.
|
[96] |
He, R.R.; Ou, S.Y.; Chen, S.C.; Ding, S.B. Network pharmacology-based study on the molecular biological mechanism of action for compound Kushen injection in anti-cancer effect. Med. Sci. Monit. 2020, 26, e918520.
|
[97] |
Sun, M.Y.; Han, J.; Duan, J.F.; Cui, Y.M.; Wang, T.; Zhang, W.H.; Liu, W.; Hong, J.R.; Yao, M.H.; Xiong, S.D.; Yan, X.Q. Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother. Res. 2007, 21, 269–277.
|
[98] |
Shu, G.W.; Yang, J.; Zhao, W.H.; Xu, C.; Hong, Z.G.; Mei, Z.N.; Yang, X.Z. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling. Toxicol. Appl. Pharmacol. 2014, 281, 157–165.
|
[99] |
Liang, S.; Li, Y.; Zhang, X.; Guo, Y.; Pan, S. Molecular evidence of compound Kushen injection against lung cancer: a network pharmacology-based investigation from western medicine to traditional medicine. Anti Cancer Agents Med. Chem. 2021, 21, 2012–2022.
|
[1] | Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G[J]. 中国药学(英文版), 2023, 32(8): 603-615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||