中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (1): 1-12.DOI: 10.5246/jcps.2022.01.001
• 【综述】 • 下一篇
Eric Wei Chiang Chan1,*(), Siu Kuin Wong2, Hung Tuck Chan3
收稿日期:
2021-09-24
修回日期:
2021-11-15
接受日期:
2021-12-23
出版日期:
2022-01-12
发布日期:
2022-01-12
通讯作者:
Eric Wei Chiang Chan
作者简介:
Eric Wei Chiang Chan1,*(), Siu Kuin Wong2, Hung Tuck Chan3
Received:
2021-09-24
Revised:
2021-11-15
Accepted:
2021-12-23
Online:
2022-01-12
Published:
2022-01-12
Contact:
Eric Wei Chiang Chan
About author:
Dr. Eric Wei Chiang CHAN, Associate Professor at the Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia, obtained his PhD (Natural Product Chemistry) from Monash University Malaysia in 2009. His PhD thesis was on ‘Bioactivities and Chemical Constituents of Leaves of some Etlingera species (Zingiberaceae) in Peninsular Malaysia’. Dr Eric Chan has 100 publications in international refereed journals with 70 (8 in JCPS) as the lead author. His publications have received more than 1946 citations in Scopus and 3959 citations in Google Scholar. Dr Eric Chan was one of the Top 5 Competitors of the Elsevier Green and Sustainable Chemistry Challenge 2015, out of 500 proposals submitted globally. In April 2016, he presented his proposal at the Green and Sustainable Chemistry Conference in Berlin, Germany. In the same month, he was awarded the Promising Researcher Award by UCSI University. Dr Eric Chan’s citations were ranked top 2% in the world (Pharmacology and Pharmacy) by a University of Stanford Report in 2020 and 2021. He was the Project Overseer of the APEC Sustainable Coastal Cities Symposium in November 2021. |
摘要:
Genipin and geniposide are iridoids from the fruits of Gardenia jasminoides. Both compounds have a methyl acetate (-COOCH3) group at C4 and a hydroxyl (-OH) group at C10. As an iridoid glucoside with a glucose moiety at C1, geniposide is also known as genipin-1-O-β-D-glucoside. Without the glucose moiety, genipin is an iridoid and the aglycone of geniposide. The -OH group at C1 of genipin is responsible for its cytotoxic effects. Geniposide without the -OH group at C1 lacks the cytotoxic effects. There are more publications on the anti-cancer properties of genipin than geniposide. Studies have reported the potentiation of genipin when used in combination with anti-cancer drugs. The anti-cancer properties of geniposide have been investigated using human intestinal microflora that hydrolyzes geniposide to genipin. Both genipin and geniposide exert anti-proliferative and apoptotic activities via different molecular targets and pathways. Other pharmacological properties of genipin and geniposide include antidepressant, antidiabetic, anti-inflammatory, anti-obesity, anti-thrombotic, hepatoprotective, and neuroprotective activities. Future research on genipin and geniposide is suggested.
Supporting:
Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. Genipin and geniposide from Gardenia jasminoides: An overview of their anti-cancer and other pharmacological properties[J]. 中国药学(英文版), 2022, 31(1): 1-12.
Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. Genipin and geniposide from Gardenia jasminoides: An overview of their anti-cancer and other pharmacological properties[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(1): 1-12.
[1] |
Villasenor, I. Bioactivities of iridoids. Anti Inflamm. Anti Allergy Agents Med. Chem. 2007, 6, 307–314.
|
[2] |
Wang, C.C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.X.; Zang, E.H.; Zhang, C.H.; Li, M.H. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules. 2020, 25, 287.
|
[3] |
Tundis, R.; Loizzo, M.R.; Menichini, F.; Statti, G.A.; Menichini, F. Biological and pharmacological activities of iridoids: recent developments. Mini Rev. Med. Chem. 2008, 8, 399–420.
|
[4] |
Lim, T.K. Gardenia jasminoides. In: Edib. Med. Non-Med. Plants. 2014, 705‒729.
|
[5] |
Yin, F.; Liu, J.H. Research and application progress of Gardenia jasminoides. Chin. Herb. Med. 2018, 10, 362–370.
|
[6] |
Shanmugam, M.K.; Shen, H.Y.; Tang, F.R.; Arfuso, F.; Rajesh, M.; Wang, L.Z.; Kumar, A.P.; Bian, J.S.; Goh, B.C.; Bishayee, A.; Sethi, G. Potential role of genipin in cancer therapy. Pharmacol. Res. 2018, 133, 195–200.
|
[7] |
Xiao, W.P.; Li, S.M.; Wang, S.Y.; Ho, C.T. Chemistry and bioactivity of Gardenia jasminoides. J. Food Drug Anal. 2017, 25, 43–61.
|
[8] |
Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol. 2020, 257, 112829.
|
[9] |
Sangat-Roemantyo, H.; Wirdateti. Gardenia jasminoides Ellis. In: Lemmens R.H.M.J.; Wulijarni-Soetjipto N.W. (eds) Dye and Tannin-Producing Plants, Vol 3. Plant Resources of South-East Asia (PROSEA), Bogor. 1992, 76‒78.
|
[10] |
Liu, H.; Chen, Y.F.; Li, F.; Zhang, H.Y. Fructus Gardenia (Gardenia jasminoides J. Ellis) phytochemistry, pharmacology of cardiovascular, and safety with the perspective of new drugs development. J. Asian Nat. Prod. Res. 2013, 15, 94–110.
|
[11] |
Fujikawa, S.; Fukui, Y.; Koga, K.; Kumada, J.I. Brilliant skyblue pigment formation from gardenia fruits. J. Ferment. Technol. 1987, 65, 419–424.
|
[12] |
Sung, H.W.; Huang, R.N.; Huang, L.L.H.; Tsai, C.C.; Chiu, C.T. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J. Biomed. Mater. Res. 1998, 42, 560–567.
|
[13] |
Akao, T.; Kobashi, K.; Aburada, M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol. Pharm. Bull. 1994, 17, 1573–1576.
|
[14] |
Jing-hua Peng, S.X.M. The role of genipin and geniposide in liver diseases: a review. Altern. Integr. Med. 2013, 2, 1‒8.
|
[15] |
Tsm, T.H.; Westly, J.; Lee, T.F.; Chen, C.F. Identification and determination of geniposide, genipin, gardenoside, and geniposidic acid from herbs by HPLC/photodiode-array detection. J. Liq. Chromatogr. 1994, 17, 2199–2205.
|
[16] |
Kim, C.Y.; Kim, J. Preparative isolation and purification of geniposide from gardenia fruits by centrifugal partition chromatography. Phytochem. Anal. 2007, 18, 115–117.
|
[17] |
Song, J.L.; Wang, R.; Shi, Y.P.; Qi, H.Y. Iridoids from the flowers of Gardenia jasminoides Ellis and their chemotaxonomic significance. Biochem. Syst. Ecol. 2014, 56, 267–270.
|
[18] |
Inouye, H.; Takeda, Y.; Saito, S.; Nishimura, H.; Sakuragi, R. Studies on monoterpene glucosides and related natural products. XXV. On the iridoid glucosides of Gardenia jasminoides Ellis forma grandiflora (Lour.) Makino. J. Pharm. Soc. Jpn. 1974, 94, 577‒586.
|
[19] |
Machida, K.; Takehara, E.; Kobayashi, H.; Kikuchi, M. Studies on the constituents of gardenia species. III. new iridoid glycosides from the leaves of Gardenia jasminoides cv. fortuneana HARA. Chem. Pharm. Bull. 2003, 51, 1417–1419.
|
[20] |
Bergonzi, M.C.; Righeschi, C.; Isacchi, B.; Bilia, A.R. Identification and quantification of constituents of Gardenia jasminoides Ellis (Zhizi) by HPLC-DAD-ESI-MS. Food Chem. 2012, 134, 1199–1204.
|
[21] |
Nagatoshi, M.; Terasaka, K.; Nagatsu, A.; Mizukami, H. Iridoid-specific glucosyltransferase from Gardenia jasminoides. J. Biol. Chem. 2011, 286, 32866–32874.
|
[22] |
Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol. 2020, 257, 112829.
|
[23] |
Cao, H.; Feng, Q.; Xu, W.; Li, X.; Kang, Z.; Ren, Y.; Du, L. Genipin induced apoptosis associated with activation of the c-Jun NH2-terminal kinase and p53 protein in HeLa cells. Biol. Pharm. Bull. 2010, 33, 1343–1348.
|
[24] |
Feng, Q.; Cao, H.L.; Xu, W.; Li, X.R.; Ren, Y.Q.; Du, L.F. Apoptosis induced by genipin in human leukemia K562 cells: Involvement of c-Jun N-terminal kinase in G2/M arrest. Acta Pharmacol. Sin. 2011, 32, 519–527
|
[25] |
Kim, E.S.; Jeong, C.S.; Moon, A. Genipin, a constituent of Gardenia jasminoides Ellis, induces apoptosis and inhibits invasion in MDA-MB-231 breast cancer cells. Oncol. Rep. 2012, 27, 567–572.
|
[26] |
Yang, X.; Yao, J.; Luo, Y.; Han, Y.G.; Wang, Z.B.; Du, L.F. P38 MAP kinase mediates apoptosis after genipin treatment in non-small-cell lung cancer H1299 cells via a mitochondrial apoptotic cascade. J. Pharmacol. Sci. 2013, 121, 272–281.
|
[27] |
Ren, Y.Q.; Tian, Y.R.; Li, C.; He, Y.N.; Ma, J.M.; Niu, L.Y.; Wang, X.G. Cytotoxic effect of geniposide and its metabolite genipin on HepG2 cells and mechanism. Chin. Pharmacol. Bull. 2016, 32, 1755–1761.
|
[28] |
Ahani, N.; Sangtarash, M.H.; Houshmand, M.; Eskandani, M.A. Genipin induces cell death via intrinsic apoptosis pathways in human glioblastoma cells. J. Cell. Biochem. 2019, 120, 2047–2057.
|
[29] |
Lv, K.; Zheng, S.S.; Li, X.Q.; Nie, Y.; Liu, T.Q.; Song, K.D. Toxicity evaluation of geniposide on MCF-7 cancer cells. Mol. Cell Biomech. 2020, 17, 199–204.
|
[30] |
Lv, K.; Zhu, J.J.; Zheng, S.S.; Jiao, Z.R.; Nie, Y.; Song, F.; Liu, T.Q.; Song, K.D. Evaluation of inhibitory effects of geniposide on a tumor model of human breast cancer based on 3D printed Cs/Gel hybrid scaffold. Mater. Sci. Eng. C. 2021, 119, 111509.
|
[31] |
Habtemariam, S.; Lentini, G. Plant-derived anticancer agents: Lessons from the pharmacology of geniposide and its aglycone, genipin. Biomedicines. 2018, 6, 39.
|
[32] |
Yang, Y.; Yang, Y.; Hou, J.; Ding, Y.; Zhang, T.; Zhang, Y.; Wang, J.; Shi, C.; Fu, W.; Cai, Z. The hydroxyl at position C1 of genipin is the active inhibitory group that affects mitochondrial uncoupling protein 2 in panc-1 cells. PLoS One. 2016, 11, e0147026.
|
[33] |
Wang, R.; MoYung, K.C.; Zhao, Y.J.; Poon, K. A mechanism for the temporal potentiation of genipin to the cytotoxicity of cisplatin in colon cancer cells. Int. J. Med. Sci. 2016, 13, 507–516.
|
[34] |
Kim, B.R.; Jeong, Y.A.; Na, Y.J.; Park, S.H.; Jo, M.J.; Kim, J.L.; Jeong, S.; Lee, S.Y.; Kim, H.J.; Oh, S.C.; Lee, D.H. Genipin suppresses colorectal cancer cells by inhibiting the Sonic Hedgehog pathway. Oncotarget. 2017, 8, 101952–101964.
|
[35] |
Kim, B.R.; Jeong, Y.A.; Jo, M.J.; Park, S.H.; Na, Y.J.; Kim, J.L.; Jeong, S.; Yun, H.K.; Kang, S.; Lee, D.H.; Oh, S.C. Genipin enhances the therapeutic effects of oxaliplatin by upregulating BIM in colorectal cancer. Mol. Cancer Ther. 2019, 18, 751–761.
|
[36] |
Lee, S.Y.; Kim, H.J.; Oh, S.C.; Lee, D.H. Genipin inhibits the invasion and migration of colon cancer cells by the suppression of HIF-1α accumulation and VEGF expression. Food Chem. Toxicol. 2018, 116, 70–76.
|
[37] |
Ye, J.W.; Li, J.; Wang, X.F.; Li, L. Medicinal supplement genipin induces p53 and Bax‑dependent apoptosis in colon cancer cells. Oncol. Lett. 2018, 16, 2957‒2964.
|
[38] |
Ko, H.; Kim, J.M.; Kim, S.J.; Shim, S.H.; Ha, C.H.; Chang, H.I. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg. Med. Chem. Lett. 2015, 25, 4191–4196.
|
[39] |
Kim, J.M.; Ko, H.; Kim, S.J.; Shim, S.H.; Ha, C.H.; Chang, H.I. Chemopreventive properties of genipin on AGS cell line via induction of JNK/Nrf2/ARE signaling pathway. J. Biochem. Mol. Toxicol. 2016, 30, 45–54.
|
[40] |
Jo, M.J.; Jeong, S.; Yun, H.K.; Kim, D.Y.; Kim, B.R.; Kim, J.L.; Na, Y.J.; Park, S.H.; Jeong, Y.A.; Kim, B.G.; Ashktorab, H.; Smoot, D.T.; Heo, J.Y.; Han, J.; Lee, D.H.; Oh, S.C. Genipin induces mitochondrial dysfunction and apoptosis via downregulation of Stat3/mcl-1 pathway in gastric cancer. BMC Cancer. 2019, 19, 739.
|
[41] |
Kim, B.R.; Jeong, Y.A.; Kim, D.Y.; Kim, J.L.; Jeong, S.; Na, Y.J.; Yun, H.K.; Park, S.H.; Jo, M.J.; Ashktorab, H.; Smoot, D.T.; Lee, D.H.; Oh, S.C. Genipin increases oxaliplatin-induced cell death through autophagy in gastric cancer. J. Cancer. 2020, 11, 460–467.
|
[42] |
Lee, J.H.; Cho, Y.S.; Jung, K.H.; Park, J.W.; Lee, K.H. Genipin enhances the antitumor effect of elesclomol in A549 lung cancer cells by blocking uncoupling protein-2 and stimulating reactive oxygen species production. Oncol. Lett. 2020, 20, 374.
|
[43] |
Hong, H.Y.; Kim, B.C. Mixed lineage kinase 3 connects reactive oxygen species to c-Jun NH2-terminal kinase-induced mitochondrial apoptosis in genipin-treated PC3 human prostate cancer cells. Biochem. Biophys. Res. Commun. 2007, 362, 307–312.
|
[44] |
Yao, M.L.; Gu, J.; Zhang, Y.C.; Wang, N.; Zhu, Z.H.; Yang, Q.T.; Liu, M.; Xia, J.F. Inhibitory effect of Genipin on uncoupling protein-2 and energy metabolism of androgen-independent prostate cancer cells. Nat. J. Androl. 2015, 21, 973–976.
|
[45] |
Kim, B.C.; Kim, H.G.; Lee, S.A.; Lim, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway. Biochem. Pharmacol. 2005, 70, 1398–1407.
|
[46] |
Wang, N.; Zhu, M.; Tsao, S.W.; Man, K.; Zhang, Z.; Feng, Y. Up-regulation of TIMP-1 by genipin inhibits MMP-2 activities and suppresses the metastatic potential of human hepatocellular carcinoma. PLoS One. 2012, 7, e46318.
|
[47] |
Hong, M.; Lee, S.; Clayton, J.; Yake, W.; Li, J. Genipin suppression of growth and metastasis in hepatocellular carcinoma through blocking activation of STAT-3. J. Exp. Clin. Cancer Res. 2020, 39, 146.
|
[48] |
Wei, M.; Wu, Y.; Liu, H.; Xie, C. Genipin induces autophagy and suppresses cell growth of oral squamous cell carcinoma via PI3K/AKT/MTOR pathway. Drug Des. Dev. Ther. 2020, 14, 395–405.
|
[49] |
Lee, J.C.; Ahn, K.S.; Jeong, S.J.; Jung, J.H.; Kwon, T.R.; Rhee, Y.H.; Kim, S.H.; Kim, S.Y.; Yoon, H.J.; Zhu, S.D.; Chen, C.Y.; Kim, S.H. Signal transducer and activator of transcription 3 pathway mediates genipin-induced apoptosis in U266 multiple myeloma cells. J. Cell Biochem. 2011, 112, 1552–1562.
|
[50] |
Ma, J.; Ding, Y. Geniposide suppresses growth, migration and invasion of MKN45 cells by down-regulation of lncRNA HULC. Exp. Mol. Pathol. 2018, 105, 252–259.
|
[51] |
Khanal, T.; Kim, H.G.; Choi, J.H.; Do, M.T.; Kong, M.J.; Kang, M.J.; Noh, K.; Yeo, H.K.; Ahn, Y.T.; Kang, W.; Kim, D.H.; Jeong, T.C.; Jeong, H.G. Biotransformation of geniposide by human intestinal microflora on cytotoxicity against HepG2 cells. Toxicol. Lett. 2012, 209, 246–254.
|
[52] |
Yu, X.; Wang, Y.; Tao, S.J.; Sun, S.L. Geniposide plays anti-tumor effects by down-regulation of microRNA-224 in HepG2 and Huh7 cell lines. Exp. Mol. Pathol. 2020, 112, 104349.
|
[53] |
Zhang, C.; Wang, N.; Tan, H.Y.; Guo, W.; Chen, F.Y.; Zhong, Z.F.; Man, K.; Tsao, S.W.; Lao, L.X.; Feng, Y.B. Direct inhibition of the TLR4/MyD88 pathway by geniposide suppresses HIF-1α-independent VEGF expression and angiogenesis in hepatocellular carcinoma. Br. J. Pharmacol. 2020, 177, 3240–3257.
|
[54] |
Hu, L.; Zhao, J.; Liu, Y.; Liu, X.; Lu, Q.; Zeng, Z.; Zhu, L.; Tong, X.; Xu, Q. Geniposide inhibits proliferation and induces apoptosis of diffuse large B-cell lymphoma cells by inactivating the HCP5/miR-27b-3p/MET axis. Int. J. Med. Sci. 2020, 17, 2735–2743.
|
[55] |
Cheng, Z.; Xu, H.; Wang, X.; Liu, Z. Lactobacillus raises in vitro anticancer effect of geniposide in HSC-3 human oral squamous cell carcinoma cells. Exp. Ther. Med. 2017, 14, 4586–4594.
|
[56] |
Qian, Y.; Song, J.L.; Sun, P.; Yi, R.K.; Liu, H.L.; Feng, X.; Park, K.Y.; Zhao, X. Lactobacillus casei strain Shirota enhances the in vitro antiproliferative effect of geniposide in human oral squamous carcinoma HSC-3 cells. Molecules. 2018, 23, 1069.
|
[57] |
Li, Z.; Zhang, T.B.; Jia, D.H.; Sun, W.Q.; Wang, C.L.; Gu, A.Z.; Yang, X.M. Genipin inhibits the growth of human bladder cancer cells via inactivation of PI3K/Akt signaling. Oncol. Lett. 2018, 15, 2619–2624.
|
[58] |
Mailloux, R.J.; Adjeitey, C.N.; Harper, M.E. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS One. 2010, 5, e13289.
|
[59] |
Ge, H.; Zhang, F.; Shan, D.; Chen, H.; Wang, X.; Ling, C.; Xi, H.; Huang, J.; Zhu, C.; Lv, J. Effects of mitochondrial uncoupling protein 2 inhibition by genipin in human cumulus cells. Biomed. Res. Int. 2015, 2015, 323246.
|
[60] |
Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Valle, A.; Oliver, J.; Roca, P. UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress. Free. Radic. Biol. Med. 2015, 86, 67–77.
|
[61] |
Kang, M.J.; Khanal, T.; Kim, H.G.; Lee, D.H.; Yeo, H.K.; Lee, Y.S.; Ahn, Y.T.; Kim, D.H.; Jeong, H.G.; Jeong, T.C. Role of metabolism by human intestinal microflora in geniposide-induced toxicity in HepG2 cells. Arch. Pharmacal. Res. 2012, 35, 733–738.
|
[62] |
Zhang, C.; Wang, N.; Tan, H.Y.; Guo, W.; Chen, F.Y.; Zhong, Z.F.; Man, K.; Tsao, S.W.; Lao, L.X.; Feng, Y.B. Direct inhibition of the TLR4/MyD88 pathway by geniposide suppresses HIF-1α-independent VEGF expression and angiogenesis in hepatocellular carcinoma. Br. J. Pharmacol. 2020, 177, 3240–3257.
|
[63] |
Khanal, T.; Kim, H.G.; Choi, J.H.; Do, M.T.; Kong, M.J.; Kang, M.J.; Noh, K.; Yeo, H.K.; Ahn, Y.T.; Kang, W.; Kim, D.H.; Jeong, T.C.; Jeong, H.G. Biotransformation of geniposide by human intestinal microflora on cytotoxicity against HepG2 cells. Toxicol. Lett. 2012, 209, 246–254.
|
[64] |
Kang, M.J.; Khanal, T.; Kim, H.G.; Lee, D.H.; Yeo, H.K.; Lee, Y.S.; Ahn, Y.T.; Kim, D.H.; Jeong, H.G.; Jeong, T.C. Role of metabolism by human intestinal microflora in geniposide-induced toxicity in HepG2 cells. Arch. Pharmacal. Res. 2012, 35, 733–738.
|
[65] |
Tian, J.S.; Cui, Y.L.; Hu, L.M.; Gao, S.; Chi, W.; Dong, T.J.; Liu, L.P. Antidepressant-like effect of genipin in mice. Neurosci. Lett. 2010, 479, 236–239.
|
[66] |
Guan, L.L.; Feng, H.Y.; Gong, D.Z.; Zhao, X.; Cai, L.; Wu, Q.; Yuan, B.; Yang, M.; Zhao, J.; Zou, Y. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. Exp. Gerontol. 2013, 48, 1387–1394.
|
[67] |
Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 2004, 495, 201–208.
|
[68] |
Koo, H.J.; Lim, K.H.; Jung, H.J.; Park, E.H. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J. Ethnopharmacol. 2006, 103, 496–500.
|
[69] |
Nam, K.N.; Choi, Y.S.; Jung, H.J.; Park, G.H.; Park, J.M.; Moon, S.K.; Cho, K.H.; Kang, C.; Kang, I.; Oh, M.S.; Lee, E.H. Genipin inhibits the inflammatory response of rat brain microglial cells. Int. Immunopharmacol. 2010, 10, 493–499.
|
[70] |
Yu, S.X.; Du, C.T.; Chen, W.; Lei, Q.Q.; Li, N.; Qi, S.; Zhang, X.J.; Hu, G.Q.; Deng, X.M.; Han, W.Y.; Yang, Y.J. Genipin inhibits NLRP3 and NLRC4 inflammasome activation via autophagy suppression. Sci. Rep. 2016, 5, 17935.
|
[71] |
Guan, L.L.; Gong, D.Z.; Yang, S.R.; Shen, N.N.; Zhang, S.; Li, Y.C.; Wu, Q.; Yuan, B.; Sun, Y.P.; Dai, N.; Zhu, L.; Zou, Y. Genipin ameliorates diet-induced obesity via promoting lipid mobilization and browning of white adipose tissue in rats. Phytother. Res. 2018, 32, 723–732.
|
[72] |
Suzuki, Y.; Kondo, K.; Ikeda, Y.; Umemura, K. Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med. 2001, 67, 807–810.
|
[73] |
Kim, J.; Kim, H.Y.; Lee, S.M. Protective effects of geniposide and genipin against hepatic ischemia/reperfusion injury in mice. Biomol. Ther. 2013, 21, 132–137.
|
[74] |
Zhong, H.; Liu, M.; Ji, Y.; Ma, M.; Chen, K.; Liang, T.; Liu, C. Genipin reverses HFD-induced liver damage and inhibits UCP2-mediated pyroptosis in mice. Cell Physiol. Biochem. 2018, 49, 1885–1897.
|
[75] |
Zhong, H.; Chen, K.; Feng, M.Y.; Shao, W.; Wu, J.; Chen, K.; Liang, T.M.; Liu, C. Genipin alleviates high-fat diet-induced hyperlipidemia and hepatic lipid accumulation in mice via miR-142a-5p/SREBP-1c axis. FEBS J. 2018, 285, 501–517.
|
[76] |
Liu, W.Z.; Li, G.L.; Hölscher, C.; Li, L. Neuroprotective effects of geniposide on Alzheimer’s disease pathology. Rev. Neurosci. 2015, 26, 371–383.
|
[77] |
Li, Y.W.; Li, L.; Hölscher, C. Therapeutic potential of genipin in central neurodegenerative diseases. CNS Drugs. 2016, 30, 889–897.
|
[78] |
Li, M.T.; Cai, N.; Gu, L.; Yao, L.J.; Bi, D.C.; Fang, W.S.; Lin, Z.J.; Wu, Y.; Xu, H.; Li, H.; Hu, Z.L.; Xu, X. Genipin attenuates Tau phosphorylation and Aβ levels in cellular models of Alzheimer’s disease. Mol. Neurobiol. 2021, 58, 4134–4144.
|
[79] |
Shan, M.Q.; Yu, S.; Yan, H.; Guo, S.; Xiao, W.; Wang, Z.Z.; Zhang, L.; Ding, A.W.; Wu, Q.N.; Li, S. A review on the phytochemistry, pharmacology, pharmacokinetics and toxicology of geniposide, a natural product. Molecules. 2017, 22, 1689.
|
[80] |
Zhou, Y.X.; Zhang, R.Q.; Rahman, K.; Cao, Z.X.; Zhang, H.; Peng, C. Diverse pharmacological activities and potential medicinal benefits of geniposide. Evid. Based Complement. Altern. Med. 2019, 2019, 1–15.
|
[81] |
Koo, H.J.; Lee, S.; Shin, K.H.; Kim, B.C.; Lim, C.J.; Park, E.H. Geniposide, an anti-angiogenic compound from the fruits of Gardenia jasminoides. Planta Med. 2004, 70, 467–469.
|
[82] |
Cai, L.; Li, R.; Tang, W.J.; Meng, G.; Hu, X.Y.; Wu, T.N. Antidepressant-like effect of geniposide on chronic unpredictable mild stress-induced depressive rats by regulating the hypothalamus-pituitary-adrenal axis. Eur. Neuropsychopharmacol. 2015, 25, 1332–1341.
|
[83] |
Wang, J.M.; Duan, P.L.; Cui, Y.; Li, Q.; Shi, Y.R. Geniposide alleviates depression-like behavior via enhancing BDNF expression in hippocampus of streptozotocin-evoked mice. Metab. Brain Dis. 2016, 31, 1113–1122.
|
[84] |
Wu, S.Y.; Wang, G.F.; Liu, Z.Q.; Rao, J.J.; Lü, L.; Xu, W.; Wu, S.G.; Zhang, J.J. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharmacol. Sin. 2009, 30, 202–208.
|
[85] |
Zhang, Y.; Ding, Y.Q.; Zhong, X.Q.; Guo, Q.; Wang, H.; Gao, J.Y.; Bai, T.; Ren, L.L.; Guo, Y.Y.; Jiao, X.Y.; Liu, Y.F. Geniposide acutely stimulates insulin secretion in pancreatic β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol. Cell Endocrinol. 2016, 430, 89–96.
|
[86] |
Chen, J.Y.; Wu, H.; Li, H.; Hu, S.L.; Dai, M.M.; Chen, J. Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. Int. Immunopharmacol. 2015, 24, 102–109.
|
[87] |
Wang, R.; Wu, H.; Chen, J.; Li, S.P.; Dai, L.; Zhang, Z.R.; Wang, W.Y. Antiinflammation effects and mechanisms study of geniposide on rats with collagen-induced arthritis. Phytother. Res. 2017, 31, 631–637.
|
[88] |
Chen, Y.; Shou, K.; Gong, C.; Yang, H.; Yang, Y.; Bao, T. Anti-inflammatory effect of geniposide on osteoarthritis by suppressing the activation of p38 MAPK signaling pathway. Biomed Res. Int. 2018, 2018, 8384576.
|
[89] |
Kojima, K.; Shimada, T.; Nagareda, Y.; Watanabe, M.; Ishizaki, J.; Sai, Y.; Miyamoto, K.; Aburada, M. Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HepG2 cells. Biol. Pharm. Bull. 2011, 34, 1613–1618.
|
[90] |
Ma, Z.G.; Dai, J.; Zhang, W.B.; Yuan, Y.; Liao, H.H.; Zhang, N.; Bian, Z.Y.; Tang, Q.Z. Protection against cardiac hypertrophy by geniposide involves the GLP-1 receptor/AMPKα signalling pathway. Br. J. Pharmacol. 2016, 173, 1502–1516.
|
[91] |
Luo, X.X.; Wu, S.Y.; Jiang, Y.Q.; Wang, L.Y.; Li, G.X.; Qing, Y.H.; Liu, J.; Zhang, D.Y. Inhibition of autophagy by geniposide protects against myocardial ischemia/reperfusion injury. Int. Immunopharmacol. 2020, 85, 106609.
|
[92] |
Liu, J.H.; Yin, F.; Guo, L.X.; Deng, X.H.; Hu, Y.H. Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: Involvement of PI3 kinase signal pathway. Acta Pharmacol. Sin. 2009, 30, 159–165.
|
[93] |
Sun, P.; Ding, H.M.; Liang, M.; Li, X.J.; Mo, W.C.; Wang, X.; Liu, Y.; He, R.Q.; Hua, Q. Neuroprotective effects of geniposide in SH-SY5Y cells and primary hippocampal neurons exposed to Aβ42. Biomed Res. Int. 2014, 2014, 1–11.
|
[94] |
Lv, C.; Wang, L.; Liu, X.L.; Yan, S.J.; Yan, S.S.; Wang, Y.Y.; Zhang, W.S. Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology. 2015, 89, 175–184.
|
[95] |
Yamazaki, M.; Sakura, N.; Chiba, K.; Mohri, T. Prevention of the neurotoxicity of the amyloid β protein by genipin. Biol. Pharm. Bull. 2001, 24, 1454–1455.
|
[1] | Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G[J]. 中国药学(英文版), 2023, 32(8): 603-615. |
[2] | Aris Stiawan, Eti Nurwening Sholikhah, Yehezkiel Steven Kurniawan, Yoga Priastomo, Jumina. Synthesis, cytotoxicity assay, and molecular docking study of hydroxychalcone derivatives as potential tyrosinase inhibitors[J]. 中国药学(英文版), 2021, 30(8): 634-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||