中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (2): 163-174.DOI: 10.5246/jcps.2025.02.013
收稿日期:2024-09-29
修回日期:2024-10-30
接受日期:2024-12-13
出版日期:2025-03-01
发布日期:2025-03-02
通讯作者:
孙劲晖
Xiaodong Zhu1,#, Xueshi Di2,#, Jinhui Sun3,*(
)
Received:2024-09-29
Revised:2024-10-30
Accepted:2024-12-13
Online:2025-03-01
Published:2025-03-02
Contact:
Jinhui Sun
About author:# Xiaodong Zhu and Xueshi Di contributed equally to this work.
Supported by:摘要:
本研究旨在通过网络药理学和分子对接技术分析柴胡-黄芪治酒精性肝纤维化的潜在作用机制。通过TCMSP数据库筛选柴胡-黄芪的活性成分及作用靶点, 通过GeneCards数据库筛选酒精性肝纤维化的疾病相关靶点, 获取二者交集靶点, 即柴胡-黄芪治疗酒精性肝纤维化的潜在作用靶点。使用Cytoscape软件构建“中药-活性成分-交集靶点”网络, 并分析网络中的关键活性成分; 利用STRING数据库对交集靶点进行蛋白互作(PPI)网络分析, 筛选出潜在核心靶点; 运用DAVID平台对交集靶点进行GO功能和KEGG通路富集分析; 利用Schrödinger软件、Maestro平台对关键活性成分与关键靶点进行分子对接验证。结果共筛选得到26个活性成分及180个潜在作用靶点(交集靶点); 获得槲皮素、山奈酚、刺芒柄花素、异鼠李素、茵陈黄酮等关键活性化合物; 筛选得到AKT1、TP53、JUN、TNF、IL6等核心靶点; 潜在作用靶点主要富集在PI3K-Ak、TNF、MAPK等信号通路。研究表明, 柴胡-黄芪主要通过槲皮素、山柰酚等多种活性成分, 作用于AKT1、TP53、JUN等多靶点, 通过PI3K-AKT、TNF、MAPK等多条信号通路来发挥治疗酒精性肝纤维化的作用, 具有多成分、多靶点、多通路的特点。
Supporting:
朱晓东, 邸学士, 孙劲晖. 基于网络药理学及分子对接技术探讨柴胡-黄芪治疗酒精性肝纤维化的作用机制[J]. 中国药学(英文版), 2025, 34(2): 163-174.
Xiaodong Zhu, Xueshi Di, Jinhui Sun. Deciphering the mechanism of action of Chaihu-Astragalus compound in the management of alcoholic liver fibrosis: A network pharmacology and molecular docking approach[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(2): 163-174.
Figure 2. “Chinese herbal medicine-active ingredient-intersection target” network diagram. Note: The blue nodes represent the potential action targets of Chaihu-Astragalus for AHF treatment; the red nodes represent Chaihu and Astragalus herbal medicines; the green nodes represent the active ingredients of Chinese medicines; the orange nodes represent the active ingredients shared by Chaihu-Astragalus.
Figure 3. PPI network of target genes of Chaihu-Astragalus for AHF treatment. Note: the node size and color are adjusted according to the node degree property, and the edge thickness and color are adjusted according to the interaction strength between nodes.
Figure 6. Molecular docking pattern of compounds and key targets. Note: A, B show the 3D structure of AKT1, TP53 with MOL00042; C, D, E show the 3D structure of JUN, TNF, IL-6 with MOL000098; a, b shows the detailed binding pattern of active site of MOL00042 with AKT1, TP53; c, d, e shows the detailed binding pattern of MOL000098 with JUN, TNF, IL-6 active site binding pattern.
| [1] |
Wang, H.Y; Li, X; Xu Y.Q. Research progress in the pathogenesis of alcoholic liver disease. J. Pract. Hepatol. 2014, 17, 5–8.
|
| [2] |
Guidelines for the prevention and treatment of alcoholic liver disease (2018 update). J. Clin. Hepatol. 2018, 34, 939–946.
|
| [3] |
Friedman, S.L. Reversibility of hepatic fibrosis and cirrhosis: is it all hype? Nat. Clin. Pract. Gastroenterol. Hepatol. 2007, 4, 236–237.
|
| [4] |
Gunzerath, L.; Hewitt, B.G.; Li, T.K.; Warren, K.R. Alcohol research: past, present, and future. Ann. N.Y. Acad. Sci. 2011, 1216, 1–23.
|
| [5] |
Lu, L.G.; You, H.; Xie, W.F.; Jia, J.D. Consensus on the Diagnosis and Treatment of Liver Fibrosis (2019). J. Pract. Hepatol. 2019, 22, 793–803.
|
| [6] |
Ding, X.; Tian, D.L.; Yan, X.L.; Zhu, J.H.; Meng, Y.C. Clinical study of Tiaoganlipifang on alcoholic hepatic fibrosis. J. Beijing Univ. Tradit. Chin. Med. 2000, 23, 58–61.
|
| [7] |
Sun, J.H.; Li, F.Y.; Xu, W.F. Effect of liver and spleen regulating formula on the expression of PDGF and PDGFR, the proliferation-related factors of HSC in alcoholic liver fibrosis in rats. Chin. J. Geriatr. Care. 2005, 3, 22–24.
|
| [8] |
Sun, J.H.; Ding, X.; Tian, D.L. Effects of liver-regulating and spleen-regulating formula serum on apoptotic gene products associated with rat isolated hepatic stellate cells. Acta Chin. Med. Pharm. 2005, 6–7.
|
| [9] |
Ru, J.L.; Li, P.; Wang, J.N.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; Xu, X.; Li, Y.; Wang, Y.H.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminf. 2014, 6, 13.
|
| [10] |
Yoon, J.S.; Chae, M.K.; Lee, S.Y.; Lee, E.J. Anti-inflammatory effect of quercetin in a whole orbital tissue culture of Graves’ orbitopathy. Br. J. Ophthalmol. 2012, 96, 1117–1121.
|
| [11] |
Wang, R.; Zhang, H.; Wang, Y.Y.; Song, F.X.; Yuan, Y.F. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol. 2017, 47, 126–133.
|
| [12] |
Chen, W.L; Dai, F.Z; Shao, Z.Y; Jiang, L; Xu, M.Q. Inhibitory and protective effects of quercetin on hepatic fibrosis induced by carbon tetrachloride in rats. Chin. J. Immunol. 2021, 37, 46–50.
|
| [13] |
Yan, H.Y.; Bai, Q.Y.; Sheng, Y.C.; Ji, L.L. Hepatoprotective effect of quercetin on ANIT-induced cholestasis in mice. Proceedings of the 6th Annual National Conference on Pharmacotoxicology. 2016, 409–410.
|
| [14] |
Wang, S.Z.; Wang, Y.Y; Gu, Y.Q.; Chen, C; Li, S.N.; Wang, R.; Yuan, Y.F. Quercetin exerts anti-liver fibrosis by inhibiting TGF-β/TAK1/JNK and TGF-β/Smad2 signaling pathways. Central. South. Pharm. 2022, 20, 965–972.
|
| [15] |
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem. 2014, 86, 103–112.
|
| [16] |
Lai, L. Study on the reduction of acetaminophen-induced hepatotoxic injury by kaempferol and its mechanism. South. Med. Univ. 2020.
|
| [17] |
Cai, W.; Zhao, L.; Li, H.R.; Zhang, S.L. Influence of kaempferol on TGF-β1/Smads signal path in liver tissue of mice with Schistosoma japonicum infection. Chin. J. Schistosomiasis Control. 2014, 26, 399–404, 419.
|
| [18] |
Ong, S.K.L.; Shanmugam, M.K.; Fan, L.; Fraser, S.E.; Arfuso, F.; Ahn, K.S.; Sethi, G.; Bishayee, A. Focus on formononetin: anticancer potential and molecular targets. Cancers. 2019, 11, 611.
|
| [19] |
Sun, D.; Lu, Y.; Zhang, S.J.; Wang, K.G.; Sun, Z. Research on the effect of formononetin on photodynamic therapy in K562 cells. Gen. Physiol. Biophys. 2017, 36, 423–430.
|
| [20] |
Liu, N.; Feng, J.; Lu, X.Y.; Yao, Z.L.; Liu, Q.; Lv, Y.; Han, Y.R.; Deng, J.F.; Zhou, Y.Q. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK pathways. Mediators Inflamm. 2019, 2019, 6175091.
|
| [21] |
Yang, J.H.; Kim, S.C.; Kim, K.M.; Jang, C.H.; Cho, S.S.; Kim, S.J.; Ku, S.K.; Cho, I.J.; Ki, S.H. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress. Eur. J. Pharmacol. 2016, 783, 92–102.
|
| [22] |
Niu, S.L.; Zhang, X.N.; Wu, Z.L.; Yao, J.J. Protective effect of Yinchen total flavonoids on rats with acute liver injury. Her. Med. 2016, 35, 246–248.
|
| [23] |
Reif, S.; Lang, A.; Lindquist, J.N.; Yata, Y.; Gabele, E.; Scanga, A.; Brenner, D.A.; Rippe, R.A. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J. Biol. Chem. 2003, 278, 8083–8090.
|
| [24] |
Yang, G.; Song, J.N. Role of PI3K/Akt signaling pathway and endoplasmic reticulum stress in hepatocyte apoptosis in rats with liver fibrosis. Basic Clin. Med. 2017, 37, 614–618.
|
| [25] |
Zhou, Y.; Wang, Q.; Sun, Q.Z.; Zhao, Y.Z.; Zhang, Y.S. Pharmacological study of the network of white art-white peony on the prevention and treatment of liver fibrosis. J. Zhejiang Chin. Med. Univ. 2021, 45, 1033–1041.
|
| [26] |
Bouaoun, L.; Sonkin, D.; Ardin, M.; Hollstein, M.; Byrnes, G.; Zavadil, J.; Olivier, M. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum. Mutat. 2016, 37, 865–876.
|
| [27] |
Anitha, S.; Raghunadharao, D.; Waliyar, F.; Sudini, H.; Parveen, M.; Rao, R.; Kumar, P.L. The association between exposure to aflatoxin, mutation in TP53, infection with hepatitis B virus, and occurrence of liver disease in a selected population in Hyderabad, India. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 766, 23–28.
|
| [28] |
Zhu, X.F.; Jia, X.; Cheng, F.Y.; Tian, H.M.; Zhou, Y.J. C-Jun acts downstream of PI3K/AKT signaling to mediate the effect of leptin on methionine adenosyltransferase 2B in hepatic stellate cells in vitro and in vivo. J. Pathol. 2020, 252, 423–432.
|
| [29] |
Yan, D.L.; Chen, J.; Ge, C.; Qian, Y.; Zhu, B.; Shao, W.B. Effects of Chuanxiongzine on TNF-α, IL-6 and IL-10 expression in mice with canavalin A-induced liver fibrosis. Med. Inn. China. 2017, 14, 19–22.
|
| [30] |
Jiang, Y.L.; Zhou, X. Advances in the relationship between STATs and liver fibrosis. World Chin. J. Dig. 2014, 22, 2703–2709.
|
| [31] |
Wang, J.F.; Chen, J.L. STAT and liver fibrosis. J. Nantong Univ. (Medical Sciences). 2017, 37, 238–243.
|
| [32] |
Kim, H.Y.; Jhun, J.Y.; Cho, M.L.; Choi, J.Y.; Byun, J.K.; Kim, E.K.; Yoon, S.K.; Bae, S.H.; Chung, B.H.; Yang, C.W. Interleukin-6 upregulates Th17 response via mTOR/STAT3 pathway in acute-on-chronic hepatitis B liver failure. J. Gastroenterol. 2014, 49, 1264–1273.
|
| [33] |
Zhong, J.B.; Liu, W.B.; Wang, H. Mechanism of action of flavonoids on alcoholic liver disease based on network pharmacology. Nat. Prod. Res. Dev. 2021, 33, 667–675.
|
| [34] |
Guo, H.T.; Zhou, T.L.; Jiang, D.; Cuconati, A.; Xiao, G.H.; Block, T.M.; Guo, J.T. Regulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-akt signal transduction pathway. J. Virol. 2007, 81, 10072–10080.
|
| [35] |
Jiang, Y.; Han, X.H.; Wang, C.L.; Wang, J.Y. Research progress of inhibition of hepatic stellate cell activation by traditional Chinese medicine in the treatment of liver fibrosis. Modernization Tradit. Chin. Med. Materia Medica-World Sci. Technol. 2019, 21, 431–436.
|
| [36] |
Hou, Y.F.; Li, H.; Liang, X.D.; Xu, Z.Z. Research progress on signal transduction pathway in liver fibrosis. Chin. J. Int. Tradit. West. Med. Liver Dis. 2014, 24, 375–377.
|
| [37] |
Yang, L.; Seki, E. Toll-like receptors in liver fibrosis: cellular crosstalk and mechanisms. Front. Physiol. 2012, 3, 138.
|
| [38] |
Varela-Rey, M.; Montiel-Duarte, C.; Osés-Prieto, J.A.; López-Zabalza, M.J.; Jaffrèzou, J.P.; Rojkind, M.; Iraburu, M.J. p38 MAPK mediates the regulation of α1(I) procollagen mRNA levels by TNF-α and TGF-β in a cell line of rat hepatic stellate cells. FEBS Lett. 2002, 528, 133–138.
|
| [1] | 杨帆, 李蕊, 刘雯婷, 孙舰, 赵承孝, 冯秀娥, 李青山. 多酚化合物LM49对角叉菜胶诱导足肿胀小鼠的抗炎作用及机制研究[J]. 中国药学(英文版), 2025, 34(1): 41-54. |
| [2] | 尚平, 刘琳, 方毅. 基于网络药理学和分子对接探讨六味地黄丸治疗卵巢早衰的作用机制[J]. 中国药学(英文版), 2024, 33(9): 805-818. |
| [3] | 朱美玲, 张基荣, 张秋荣, 林羽, 李小艳, 许文, 徐伟. 基于网络药理学和化学计量学对中成药质量控制方法研究: 以活络散为例[J]. 中国药学(英文版), 2024, 33(9): 819-836. |
| [4] | 李霞, 程贝贝, 谭骏岚, 万佳婧, 王宇红, 戴爱国. 黄芪主成分槲皮素通过MAPK通路调控PASMCs铁死亡抗低氧性肺动脉高压的研究[J]. 中国药学(英文版), 2024, 33(8): 714-729. |
| [5] | 魏晓玉, 于路航, 李梦茹, 徐强. 网络药理学研究揭示连花清瘟-辛夷散联合治疗新冠后嗅觉损伤的潜在作用机制[J]. 中国药学(英文版), 2024, 33(7): 631-646. |
| [6] | 张啸, 钟叶, 胡永生, 王博龙. 《肿瘤良方大全》中肝癌用药规律挖掘及其核心药对机制分析[J]. 中国药学(英文版), 2024, 33(7): 647-658. |
| [7] | 韩世盛, 王怡. 桃红四物汤改善动静脉内瘘失功的潜在机制: 一项网络药理学、分子对接以及分子动力学模拟研究[J]. 中国药学(英文版), 2024, 33(6): 511-524. |
| [8] | 李双, 孙璐瑶, 尤斯涵, 张佳燚, 殷宏艳, 曹津萌, 刘心星, 郭春燕, 刘喜富. 基于网络药理学探讨桃红四物汤治疗阿尔茨海默症的主要有效成分及其作用机制[J]. 中国药学(英文版), 2024, 33(6): 525-542. |
| [9] | 徐云玲, 贺蛟龙. 基于网络药理学探讨白英干预类风湿性关节炎的潜在作用机制研究[J]. 中国药学(英文版), 2024, 33(6): 559-570. |
| [10] | 崔旭阳, 姬中杰, 时潘扬, 魏晓岑, 马玉宁, 邢梦真. 基于网络药理学探讨复方苦参注射液治疗黑色素瘤的作用机制[J]. 中国药学(英文版), 2024, 33(5): 448-457. |
| [11] | 刘芳琳, 张春娟, 沈秋跃, 周昔程, 赵越, 富冯峰, 刘芳. 基于网络药理学和分子对接技术探讨参芪扶正注射液治疗慢性阻塞性肺疾病的潜在药理学机制[J]. 中国药学(英文版), 2024, 33(4): 339-351. |
| [12] | 王晓航, 王乐, 肖銮娟, 芦春斌. 芒柄花黄素通过雌激素受体抑制前列腺增生[J]. 中国药学(英文版), 2024, 33(3): 216-229. |
| [13] | 王思宇, 周淑伟, 喻斌. 基于网络药理学-分子对接探析灭幽汤"异病同治"慢性萎缩性胃炎和胃溃疡的作用机制[J]. 中国药学(英文版), 2024, 33(3): 258-271. |
| [14] | 韩正茹, 宋婉慈, 罗旸, 肖敏, 王梦恒, 郑吴殷晓, 但汉雄, 尹强, 尹海龙, 尤朋涛. 护肝布祖热颗粒通过EGFR/Ras/PI3K/AKT信号通路改善免疫性肝损伤: 一项网络药理学研究和实验验证[J]. 中国药学(英文版), 2024, 33(2): 123-141. |
| [15] | 陈云丽, 颜仁梁, 李丽莎, 张亚敏, 徐小妹, 卢雪花, 徐榕青, 林文津. 基于网络药理学和分子对接探讨陈皮治疗阿尔茨海默病的作用机制[J]. 中国药学(英文版), 2024, 33(2): 142-155. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||