中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (6): 543-558.DOI: 10.5246/jcps.2024.06.040
孙娜*(), 马烁, 靳琳萱, 张新, 周苗, 杨欢欢, 李文倩, 吴欣茹, 侯艳艳, 袁宇涵, 张玉, 舒朋华*()
收稿日期:
2023-11-13
修回日期:
2024-01-12
接受日期:
2024-03-05
出版日期:
2024-06-30
发布日期:
2024-06-30
通讯作者:
孙娜, 舒朋华
Na Sun*(), Shuo Ma, Linxuan Jin, Xin Zhang, Miao Zhou, Huanhuan Yang, Wenqian Li, Xinru Wu, Yanyan Hou, Yuhan Yuan, Yu Zhang, Penghua Shu*()
Received:
2023-11-13
Revised:
2024-01-12
Accepted:
2024-03-05
Online:
2024-06-30
Published:
2024-06-30
Contact:
Na Sun, Penghua Shu
Supported by:
摘要:
连翘作为传统中药, 具有显著的抗病毒作用, 尤其是在治疗新冠肺炎方面。然而, 其抗病毒有效化合物及其靶点尚不清楚。本论文利用网络药理学技术筛选连翘中的抗病毒成分和靶标, 并利用分子对接技术分析了它们之间的相互作用。最终, 从连翘中筛选出11个活性化合物(1–11)和7个抗病毒靶标(AKT1、TP53、MYC、PTEN、CASP8、MMP9和VEGFA), 并利用基因本体论分析预测了潜在靶标可能的生物信号通路。基于分子对接结果, 我们讨论了活性化合物的构效关系。此外, 对活性化合物的吸收、分布、代谢、排泄和毒性(ADMET)特性进行了预测和分析。本研究阐明了连翘多个靶点和途径在治疗病毒性疾病中的协同作用, 以及活性化合物的可药用性。本研究为开发和设计新型抗病毒药物提供了依据。
Supporting: /attached/file/20240707/20240707164630_166.pdf
孙娜, 马烁, 靳琳萱, 张新, 周苗, 杨欢欢, 李文倩, 吴欣茹, 侯艳艳, 袁宇涵, 张玉, 舒朋华. 基于靶点和活性成分的筛选探讨连翘抗病毒作用机制[J]. 中国药学(英文版), 2024, 33(6): 543-558.
Na Sun, Shuo Ma, Linxuan Jin, Xin Zhang, Miao Zhou, Huanhuan Yang, Wenqian Li, Xinru Wu, Yanyan Hou, Yuhan Yuan, Yu Zhang, Penghua Shu. Unveiling the antiviral mechanism of Forsythia suspensa: A comprehensive analysis of screening targets and components[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(6): 543-558.
Figure 5. GO terms of 130 potential targets. The top 10 GO functional terms were selected (P ≤ 0.05). Note: The color of terms turned from blue to red. The redder the bar was, the smaller the adjusted P-value was. Abbreviations: BP: biological processes; CC: cellular component; MF: molecular function.
Figure 6. KEGG pathway enrichment of 130 potential targets. The top 20 pathways were identified. Color represented the P-value, and the size of the spot represented the count of genes.
Figure 10. (A) Docking and binding pattern of compound 5 (pink) into AKT1 active site; (B) 2D interaction diagram of compound 5 (pink) with amino acid residues of AKT1; (C) Docking and binding pattern of compound 5 (pink) into MMP9 active site; (D) 2D interaction diagram of compound 5 (pink) with amino acid residues of MMP9.
Figure 11. (A) Docking and binding pattern of compound 4 (blue) into PTEN active site; (B) 2D interaction diagram of compound 4 (blue) with amino acid residues of PTEN; (C) Docking and binding pattern of compound 7 (yellow) into MYC active site; (D) 2D interaction diagram of compound 7 (yellow) with amino acid residues of MYC.
[1] |
Wang, W.; Kang, S.J.; Zhou, W.; Vikesland, P.J. Environmental routes of virus transmission and the application of nanomaterial-based sensors for virus detection. Environ. Sci. Nano. 2023, 10, 393–423.
|
[2] |
Wallis, R.S.; O’Garra, A.; Sher, A.; Wack, A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat. Rev. Immunol. 2023, 23, 121–133.
|
[3] |
Jones, J.C.; Yen, H.L.; Adams, P.; Armstrong, K.; Govorkova, E.A. Influenza antivirals and their role in pandemic preparedness. Antivir. Res. 2023, 210, 105499.
|
[4] |
Rehman, H.; Ahmad, M.I. COVID-19: a wreak havoc across the globe. Arch. Physiol. Biochem. 2023, 129, 82–94.
|
[5] |
Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses. 2021, 13, 202.
|
[6] |
Wang, Z.X.; Zhang, J.M.; Zhan, J.Y.; Gao, H.W. Screening out anti-inflammatory or anti-viral targets in Xuanfei Baidu Tang through a new technique of reverse finding target. Bioorg. Chem. 2021, 116, 105274.
|
[7] |
Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin. Infect. Dis. 2023, 76, e342−e349.
|
[8] |
Saravolatz, L.D.; Depcinski, S.; Sharma, M. Molnupiravir and nirmatrelvir-ritonavir: oral coronavirus disease 2019 antiviral drugs. Clin. Infect. Dis. 2023, 76, 165–171.
|
[9] |
Gandhi, R.; Bedimo, R.; Hoy, J.; Landovitz, R.; Smith, D.M.; Eaton, E.F.; Lehmann, C.; Springer, S.; Sax, P.; Thompson, M.; Benson, C.; Buchbinder, S.; del Rio, C.; Eron, J.; Günthard, H.; Molina, J.; Jacobsen, D.M.; Saag, M. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2022 recommendations of the international antiviral society-USA panel. JAMA. 2023, 329, 63−84.
|
[10] |
Bojkova, D.; Reus, P.; Panosch, L.; Bechtel, M.; Rothenburger, T.; Kandler, J.D.; Pfeiffer, A.; Wagner, J.U.G.; Shumliakivska, M.; Dimmeler, S.; Olmer, R.; Martin, U.; Vondran, F.W.R.; Toptan, T.; Rothweiler, F.; Zehner, R.; Rabenau, H.F.; Osman, K.L.; Pullan, S.T.; Carroll, M.W.; Stack, R.; Ciesek, S.; Wass, M.N.; Michaelis, M.; Cinatl, J.Jr. Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform. iScience. 2023, 26, 105944.
|
[11] |
Wasilewicz, A.; Kirchweger, B.; Bojkova, D.; Abi Saad, M.J.; Langeder, J.; Bütikofer, M.; Adelsberger, S.; Grienke, U.; Cinatl, J.Jr, Petermann, O.; Scapozza, L.; Orts, J.; Kirchmair, J.; Rabenau, H.F.; Rollinger, J.M. Identification of natural products inhibiting SARS-CoV-2 by targeting viral proteases: a combined in silico and in vitro approach. J. Nat. Prod. 2023, 86, 264–275.
|
[12] |
Fu, Z.; Zhou, Z.; Liu, X.; Zhan, P. Advances in the study of antiviral natural products. Acta Pharm. Sinica. 2020, 55, 703−719.
|
[13] |
Wang, J.; Ge, W.; Peng, X.; Yuan, L.X.; He, S.B.; Fu, X.Y. Investigating the active compounds and mechanism of HuaShi XuanFei formula for prevention and treatment of COVID-19 based on network pharmacology and molecular docking analysis. Mol. Divers. 2022, 26, 1175–1190.
|
[14] |
Luo, T.T.; Lu, Y.; Yan, S.K.; Xiao, X.; Rong, X.L.; Guo, J. Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin. J. Integr. Med. 2020, 26, 72–80.
|
[15] |
Liu, Y.F.; Ai, N.; Keys, A.; Fan, X.H.; Chen, M.J. Network pharmacology for traditional Chinese medicine research: methodologies and applications. Chin. Herb. Med. 2015, 7, 18–26.
|
[16] |
Yang, N.N.; Shao, H.F.; Deng, J.L.; Liu, Y.Q. Network pharmacology-based analysis to explore the therapeutic mechanism of Cortex Dictamni on atopic dermatitis. J. Ethnopharmacol. 2023, 304, 116023.
|
[17] |
Zhang, M.; Huang, X.L.; Xu, F.; Qin, P.; Din, Q.; Fang, R.Z.; Wang, X.P.; Wu, H.M. Predicting the anti-inflammatory mechanism of polygonum perfoliatum L based on network pharmacology. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 052012.
|
[18] |
Sun, N.; Yang, H.H.; Zhou, M.; Hou, Y.Y.; Wu, X.R.; Li, W.Q.; Liu, H.; Zheng, L.J.; Sun, J.G.; Jin, L.X.; Ma, S.; Shu, P.H. A review of chemical constituents from Ajuga nipponensis and their anti-inflammatory activities analysis. Biochem. Syst. Ecol. 2022, 105, 104531.
|
[19] |
Lee, W.Y.; Lee, C.Y.; Kim, Y.S.; Kim, C.E. The methodological trends of traditional herbal medicine employing network pharmacology. Biomolecules. 2019, 9, 362.
|
[20] |
Agarwal, S.; Mehrotra, R. An overview of molecular docking. JSM Chem. 2016, 4, 1024−1028.
|
[21] |
Yang, W.; Feng, Q.Q.; Peng, Z.Y.; Wang, G.C. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. Eur. J. Med. Chem. 2022, 234, 114273.
|
[22] |
Siddiqa, A.; Tajammal, A.; Irfan, A.; Azam, M.; Ali Munawar, M.; Hardy, R.S.; Basra, M.A.R. Synthesis, molecular docking, bio-evaluation and quantitative structure activity relationship of new chalcone derivatives as antioxidants. J. Mol. Struct. 2023, 1277, 134814.
|
[23] |
Pirzada, R.H.; Ahmad, B.; Qayyum, N.; Choi, S. Modeling structure–activity relationships with machine learning to identify GSK3-targeted small molecules as potential COVID-19 therapeutics. Front. Endocrinol. 2023, 14, 1084327.
|
[24] |
Tao, Q.Y.; Du, J.X.; Li, X.T.; Zeng, J.Y.; Tan, B.; Xu, J.H.; Lin, W.J.; Chen, X.L. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev. Ind. Pharm. 2020, 46, 1345–1353.
|
[25] |
Chen, X.Y.; Guo, D.Y.; Gong, X.C.; Wan, N.; Wu, Z.F. Optimization of steam distillation process for volatile oils from forsythia suspensa and lonicera japonica according to the concept of quality by design. Separations. 2023, 10, 25.
|
[26] |
Liu, Y.R.; Yang, L.; Wang, J.Z.; Chen, D.L. New lignans and phenylethanoid with antioxidant activity from aerial parts of Forsythia suspensa (Thunb.) Vahl. Nat. Prod. Res. 2023, 37, 725–733.
|
[27] |
Weng, J.J.; Xie, Y.L.; Zhang, X.S.; Gao, C.; Cui, C.; Zhao, J.X.; Bai, X.F.; Zhu, Y.C.; Hu, H.M.; Lv, G.Y. Compatibility rules of prescriptions containing Forsythiae fructus in dictionary of traditional Chinese medicine prescriptions and anti-inflammatory mechanism: an exploration based on data mining and network pharmacology. Chin. J. Exp. Tradit. Med. Formu. 2021, 27, 181−193.
|
[28] |
Lin, Y. Research progress on antiviral effect of traditional Chinese medicine and its bioactive constituents. Strait Pharm. J. 2021, 33, 1−7.
|
[29] |
Wang, Z.Y.; Xia, Q.; Liu, X.; Liu, W.X.; Huang, W.Z.; Mei, X.; Luo, J.; Shan, M.X.; Lin, R.C.; Zou, D.X.; Ma, Z.Q. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: a review. J. Ethnopharmacol. 2018, 210, 318–339.
|
[30] |
Li, W.; Sun, L.T.; Zhao, L.; Yue, X.D.; Dai, S.J. New C9-monoterpenoid alkaloids featuring a rare skeleton with anti-inflammatory and antiviral activities from Forsythia suspensa. Chem. Biodivers. 2022, 19, E202100668.
|
[31] |
Zhang, R.Z.; Zhu, X.E.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front. Pharmacol. 2019, 10, 123.
|
[32] |
Li, W.W.; Yuan, G.Q.; Pan, Y.X.; Wang, C.; Chen, H.X. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front. Pharmacol. 2017, 8, 74.
|
[33] |
Zhang, R.Z.; Yu, S.J.; Bai, H.; Ning, K. TCM-Mesh: the database and analytical system for network pharmacology analysis for TCM preparations. Sci. Rep. 2017, 7, 2821.
|
[34] |
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1−1.33.
|
[35] |
Athanasios, A.; Charalampos, V.; Vasileios, T.; Ashraf, G. Protein-protein interaction (PPI) network: recent advances in drug discovery. Curr. Drug Metab. 2017, 18, 5–10.
|
[36] |
Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein data bank (PDB): the single global macromolecular structure archive. Methods Mol. Biol. 2017, 1607, 627–641.
|
[37] |
Chen, L.; Chu, C.; Lu, J.; Kong, X.Y.; Huang, T.; Cai, Y.D. Gene ontology and KEGG pathway enrichment analysis of a drug target-based classification system. PLoS One. 2015, 10, e0126492.
|
[38] |
Zhang, Y.H.; Zeng, T.; Chen, L.; Huang, T.; Cai, Y.D. Determining protein-protein functional associations by functional rules based on gene ontology and KEGG pathway. Biochim. Biophys. Acta BBA Proteins Proteom. 2021, 1869, 140621.
|
[39] |
Cumming, J.G.; Davis, A.M.; Muresan, S.; Haeberlein, M.; Chen, H.M. Chemical predictive modelling to improve compound quality. Nat. Rev. Drug Discov. 2013, 12, 948–962.
|
[40] |
Xiong, G.L.; Wu, Z.X.; Yi, J.C.; Fu, L.; Yang, Z.J.; Hsieh, C.; Yin, M.Z.; Zeng, X.X.; Wu, C.K.; Lu, A.P.; Chen, X.; Hou, T.J.; Cao, D.S. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14.
|
[41] |
Wang, L.; Song, J.K.; Liu, A.L.; Xiao, B.; Li, S.; Wen, Z.; Lu, Y.; Du, G.H. Research progress of the antiviral bioactivities of natural flavonoids. Nat. Prod. Bioprospecting. 2020, 10, 271–283.
|
[42] |
Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021, 140, 111596.
|
[43] |
Ninfali, P.; Antonelli, A.; Magnani, M.; Scarpa, E.S. Antiviral properties of flavonoids and delivery strategies. Nutrients. 2020, 12, 2534.
|
[44] |
Wang, N.N.; Dong, J.E.; Deng, Y.H.; Zhu, M.F.; Wen, M.; Yao, Z.J.; Lu, A.P.; Wang, J.B.; Cao, D.S. ADME properties evaluation in drug discovery: prediction of caco-2 cell permeability using a combination of NSGA-II and boosting. J. Chem. Inf. Model. 2016, 56, 763–773.
|
[45] |
Liu, Y.; Zeng, S. Advances in the MDCK-MDR1 cell model and its applications to screen drug permeability. Acta Pharm. Sinica. 2008, 43, 559–564.
|
[46] |
Bohnert, T.; Gan, L.S. Plasma protein binding: from discovery to development. J. Pharm. Sci. 2013, 102, 2953–2994.
|
[47] |
Bergmann, S.; Lawler, S.E.; Qu, Y.; Fadzen, C.M.; Wolfe, J.M.; Regan, M.S.; Pentelute, B.L.; Agar, N.Y.R.; Cho, C.F. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat. Protoc. 2018, 13, 2827–2843.
|
[1] | 蔡粟茜, 张可锋, 蔡小华. 岩白菜素: 一种通用易得的生物活性修饰前体[J]. 中国药学(英文版), 2023, 32(5): 333-350. |
[2] | 陈秀秀, 罗荣华, 姚债文, 郑昌博, 唐秋菊, 庞伟, 汪芳, 杨柳萌, 熊思东, 郑永唐. FDA已批准上市药物托伐普坦可在体内外抑制寨卡病毒感染[J]. 中国药学(英文版), 2021, 30(3): 218-229. |
[3] | 周景, 张洪, 李晓娇, 宋相仕, 张萌萌, 丁艳华. HCV耐药突变在三个Ib期临床试验中对DAA单药给药后短期疗效影响的分析[J]. 中国药学(英文版), 2021, 30(2): 133-145. |
[4] | 郝海军*, 贾幼智, 韩茹. 磷脂复合物: 一种能够提高中药活性成分口服生物利用度的有效方法[J]. , 2013, 22(5): 385-392. |
[5] | 任龙, 焦宁*. 小核糖核酸病毒抑制剂研究及WIN系列抗病毒化合物的发展[J]. , 2012, 21(6): 509-525. |
[6] | 杨兴鑫, 张艳利, 张晓霞, 李晓妮*. 细胞膜色谱法及其在中药活性成分分析中的应用[J]. , 2011, 20(1): 20-25. |
[7] | 张镇, 王涵, 杜凌燕, 陈昆勃, 肖苏龙, 俞飞, 张礼和, 周德敏*. 抗病毒药物的发现及进展[J]. , 2010, 19(6): 409-422. |
[8] | 窦玉玲, 秦会玲, 周铜水, 欧伶, 卢艳花*, 魏东芝** . 贯叶连翘中的1个异丙基二氧基黄酮醇化合物[J]. , 2004, 13(2): 112-114. |
[9] | 杨莉萍, 曹素艳, 邵宏*. 干扰素的抗病毒作用及其治疗SARS的潜能[J]. , 2003, 12(4): 227-230. |
[10] | 季小慎, 张华峰, 高艳, 刘真业, 王健康, 王煜伦. 2-氯-5-(5,6-二氢-2-甲基-1,4-氧硫杂环已二烯-3-甲酰胺基)苯甲酸异丙酯类似物的合成和生物活性[J]. , 2000, 9(4): 179-181. |
[11] | 赵桂森, Vasu Nair. 4(R)-(6-氨基-9H-嘌呤-9-基)-2(R)-(羟甲基)四氢呋喃-3(R)-醇的合成[J]. , 2000, 9(3): 137-141. |
[12] | 刘东雷, 张杨, 徐绥绪*, 徐颖. 连翘中苯乙醇甙类化合物[J]. , 1998, 7(2): 103-105. |
[13] | 刘东雷, 徐绥绪* 王伟芳. 连翘中一个新木脂素单糖甙[J]. , 1998, 7(1): 49-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||