[1] Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron. 2010, 67, 181-198.
[2] Wang, Y.; Shen, J.G.; Wang, X.M.; Fu, D.L.; Chen, C.Y.; Lu, L.Y.; Lu, L.; Xie, C.L.; Fang, J.Q.; Zheng, G.Q. Scalp acupuncture for acute ischemic stroke: a meta-analysis of randomized controlled trials. Evid. Based. Complement. Alternat. Med. 2012, 2012, 480950.
[3] Röther, J.; Ford, G.A.; Thijs, V.N. Thrombolytics in acute ischaemic stroke: historical perspective and future opportunities. Cerebrovasc. Dis. 2013, 35, 313-319.
[4] Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; van der Lugt, A.; de Miquel, M.A.; Donnan, G.A.; Roos, Y.B.W.E.M.; Bonafe, A.; Jahan, R.; Diener, H.C.; van den Berg, L.A.; Levy, E.I.; Berkhemer, O.A.; Pereira, V.M.; Rempel, J.; Millán, M.; Davis, S.M.; Roy, D.; Thornton, J.; Román, L.S.; Ribó, M.; Beumer, D.; Stouch, B.; Brown, S.; Campbell, B.C.V.; van Oostenbrugge, R.J.; Saver, J.L.; Hill, M.D.; Jovin, T.G. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016, 387, 1723-1731.
[5] Balami, J.S.; Chen, R.L.; Sutherland, B.A.; Buchan, A.M. Thrombolytic agents for acute ischaemic stroke treatment: the past, present and future. CNS Neurol. Disord. Drug Targets. 2013, 12, 145-154.
[6] Balami, J.S.; Sutherland, B.A.; Edmunds, L.D.; Grunwald, I.Q.; Neuhaus, A.A.; Hadley, G.; Karbalai, H.; Metcalf, K.A.; DeLuca, G.C.; Buchan, A.M. A systematic review and meta-analysis of randomized controlled trials of endovascular thrombectomy compared with best medical treatment for acute ischemic stroke. Int. J. Stroke. 2015, 10, 1168-1178.
[7] Zhu, Y.J.; Gao, Y.Q.; Zheng, D.P.; Shui, M.Y.; Yu, K.; Liu, X.Y.; Lin, Y.; Su, L.; Yang, W.X.; Wang, Y.Y. Design and evaluation of EphrinA1 mutants with cerebral protective effect. Sci. Rep. 2017, 7, 1881.
[8] Bu, Q.X.; Liu, X.Y.; Zhu, Y.J.; Liu, Y.; Wang, Y.Y. W007B protects brain against ischemia-reperfusion injury in rats through inhibiting inflammation, apoptosis and autophagy. Brain Res. 2014, 1558, 100-108.
[9] Wang, Y.; Liu, Y.; Zhang, P.; Tong, W.; Cai, Y. Magnolol derivatives, honokiol derivatives and their preparation method and application. China, 2013.
[10] Ye, Z. A new compound W026B alleviates ischemic brain injury through inhibiting the production of inflammatory cytokines in pMCAO and tMCAO, and enhances the beneficial effect of tPA. J. Chin. Pharm. Sci. 2018, 27, 675-685.
[11] Zhang, Z.J.; Zhang, G.X.; Sun, Y.W.; Szeto, S.S.W.; Law, H.C.H.; Quan, Q.; Li, G.H.; Yu, P.; Sho, E.; Siu, M.K.W.; Lee, S.M.Y.; Chu, I.K.; Wang, Y.Q. Tetramethylpyrazine nitrone, a multifunctional neuro-protective agent for ischemic stroke therapy. Sci. Rep. 2016, 6, 37148.
[12] Llombart, V.; Trejo, S.A.; Bronsoms, S.; Morancho, A.; Ma, F.F.; Faura, J.; García-Berrocoso, T.; Simats, A.; Rosell, A.; Canals, F.; Hernández-Guillamón, M.; Montaner, J. Profiling and identification of new proteins involved in brain ischemia using MALDI-imaging-mass-spectrometry. J. Proteomics. 2017, 152, 243-253.
[13] Shah, F.A.; Park, D.J.; Koh, P.O. Identification of proteins differentially expressed by quercetin treatment in a middle cerebral artery occlusion model: A proteomics approach. Neurochem. Res. 2018, 43, 1608-1623.
[14] Shui, M.Y.; Liu, X.Y.; Zhu, Y.J.; Wang, Y.Y. Exogenous hydrogen sulfide attenuates cerebral ischemia-reperfusion injury by inhibiting autophagy in mice. Can. J. Physiol. Pharmacol. 2016, 94, 1187-1192.
[15] Zhang, G.C.; Chen, L.; Yang, L.L.; Hua, X.D.; Zhou, B.Q.; Miao, Z.G.; Li, J.Z.; Hu, H.; Namaka, M.; Kong, J.M.; Xu, X.S. Combined use of spatial restraint stress and middle cerebral artery occlusion is a novel model of post-stroke depression in mice. Sci. Rep. 2015, 5, 16751.
[16] Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359-362.
[17] Hu, Z.Y.; Bian, X.L.; Liu, X.Y.; Zhu, Y.J.; Zhang, X.Y.; Chen, S.Z.; Wang, K.W.; Wang, Y.Y. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Res. 2013, 1491, 204-212.
[18] Zhang, H.P.; Wang, F.; Kranzler, H.R.; Anton, R.F.; Gelernter, J. Variation in regulator of G-protein signaling 17 gene (RGS17) is associated with multiple substance dependence diagnoses. Behav. Brain Funct. 2012, 8, 23.
[19] Soundararajan, M.; Willard, F.S.; Kimple, A.J.; Turnbull, A.P.; Ball, L.J.; Schoch, G.A.; Gileadi, C.; Fedorov, O.Y.; Dowler, E.F.; Higman, V.A.; Hutsell, S.Q.; Sundström, M.; Doyle, D.A.; Siderovski, D.P. Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc. Natl. Acad. Sci. USA. 2008, 105, 6457-6462.
[20] Kimple, A.J.; Bosch, D.E.; Giguère, P.M.; Siderovski, D.P. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets. Pharmacol. Rev. 2011, 63, 728-749.
[21] Roman, D.L.; Traynor, J.R. Regulators of G protein signaling (RGS) proteins as drug targets: modulating G-protein-coupled receptor (GPCR) signal transduction. J. Med. Chem. 2011, 54, 7433-7440.
[22] Larminie, C.; Murdock, P.; Walhin, J.P.; Duckworth, M.; Blumer, K.J.; Scheideler, M.A.; Garnier, M. Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res. Mol. Brain Res. 2004, 122, 24-34.
[23] Garzón, J.; Rodríguez-Muñoz, M.; Vicente-Sánchez, A.; Bailón, C.; Martínez-Murillo, R.; Sánchez-Blázquez, P. RGSZ2 binds to the neural nitric oxide synthase PDZ domain to regulate mu-opioid receptor-mediated potentiation of the N-methyl-D-aspartate receptor-calmodulin-dependent protein kinase II pathway. Antioxid. Redox Signal. 2011, 15, 873-887.
[24] Mao, H.; Zhao, Q.S.; Daigle, M.; Ghahremani, M.H.; Chidiac, P.; Albert, P.R. RGS17/RGSZ2, a novel regulator of Gi/o, Gz, and Gq signaling. J. Biol. Chem. 2004, 279, 26314-26322.
[25] Lafourcade, C.A.; Zhang, L.H.; Alger, B.E. Novel mGluR- and CB1R-independent suppression of GABA release caused by a contaminant of the group I metabotropic glutamate receptor agonist, DHPG. PLoS One. 2009, 4, e6122.
[26] Kohara, A.; Takahashi, M.; Yatsugi, S.; Tamura, S.; Shitaka, Y.; Hayashibe, S.; Kawabata, S.; Okada, M. Neuroprotective effects of the selective type 1 metabotropic glutamate receptor antagonist YM-202074 in rat stroke models. Brain Res. 2008, 1191, 168-179.
[27] Rao, A.M.; Hatcher, J.F.; Dempsey, R.J. Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil. Neurosci. Lett. 2000, 293, 1-4.
[28] Liu, B.; Dong, Q.; Zhang, S.Y.; Su, D.Y.; Yang, Z.C.; Lv, M.; Zhang, S.Y. MGluR1, 5 activation protects cortical astrocytes and GABAergic neurons from ischemia-induced impairment. Neurosci. Res. 2013, 75, 160-166.
[29] Pai, M.Y.; Lomenick, B.; Hwang, H.; Schiestl, R.; McBride, W.; Loo, J.A.; Huang, J. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol. Biol. 2015, 1263, 287-298.
[30] Lomenick, B.; Jung, G.; Wohlschlegel, J.A.; Huang, J. Target identification using drug affinity responsive target stability (DARTS). Curr. Protoc. Chem. Biol. 2011, 3, 163-180. |