[1] Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; Giamberardino, M.A.; Kaasa, S.; Korwisi, B.; Kosek, E.; Lavandʼhomme, P.; Nicholas, M.; Perrot, S.; Scholz, J.; Schug, S.; Smith, B.H.; Svensson, P.; Vlaeyen, J.W.S.; Wang, S.J. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain. 2019, 160, 19-27.
[2] Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain. 2006, 10, 287-333.
[3] Pina, L.T.S.; Gouveia, D.N.; Costa, J.S.; Quintans, J.S.S.; Quintans-Júnior, L.J.; Barreto, R.S.S.; Guimarães, A.G. New perspectives for chronic pain treatment: a patent review (2010-2016). Expert. Opin. Ther. Pat. 2017, 27, 787-796.
[4] Zhao, X.; Ye, J.; Sun, Q.; Xiong, Y.L.; Li, R.T.; Jiang, Y.M. Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice. Neuropharmacology. 2011, 60, 446-452.
[5] Liu, X.J.; Liu, T.; Chen, G.; Wang, B.; Yu, X.L.; Yin, C.; Ji, R.R. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation. Sci. Rep. 2016, 6, 28188.
[6] Notartomaso, S.; Mascio, G.; Bernabucci, M.; Zappulla, C.; Scarselli, P.; Cannella, M.; Imbriglio, T.; Gradini, R.; Battaglia, G.; Bruno, V.; Nicoletti, F. Analgesia induced by the epigenetic drug, L-acetylcarnitine, outlasts the end of treatment in mouse models of chronic inflammatory and neuropathic pain. Mol. Pain. 2017, 13, 1744806917697009.
[7] Wu, P.C.; Hsiao, H.T.; Lin, Y.C.; Shieh, D.B.; Liu, Y.C. The analgesia efficiency of ultrasmall magnetic iron oxide nanoparticles in mice chronic inflammatory pain model. Nanomedicine. 2017, 13, 1975-1981.
[8] Li, J.X.; Thorn, D.A.; Qiu, Y.Y.; Peng, B.W.; Zhang, Y.N. Antihyperalgesic effects of imidazoline I(2) receptor ligands in rat models of inflammatory and neuropathic pain. Br. J. Pharmacol. 2014, 171, 1580-1590.
[9] Sun, R.; Zhang, W.; Bo, J.H.; Zhang, Z.X.; Lei, Y.S.; Huo, W.W.; Liu, Y.; Ma, Z.L.; Gu, X.P. Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation. Neuroscience. 2017, 344, 243-254.
[10] Bagdas, D.; Gurun, M.S.; Flood, P.; Papke, R.L.; Damaj, M.I. New insights on neuronal nicotinic acetylcholine receptors as targets for pain and inflammation: A focus on α7 nAChRs. Curr. Neuropharmacol. 2018, 16, 415-425.
[11] Egea, J.; Buendia, I.; Parada, E.; Navarro, E.; León, R.; Lopez, M.G. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem. Pharmacol. 2015, 97, 463-472.
[12] Bagdas, D.; Wilkerson, J.L.; Kulkarni, A.; Toma, W.; AlSharari, S.; Gul, Z.; Lichtman, A.H.; Papke, R.L.; Thakur, G.A.; Damaj, M.I. The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain. Br. J. Pharmacol. 2016, 173, 2506-2520.
[13] AlSharari, S.D.; Freitas, K.; Damaj, M.I. Functional role of alpha7 nicotinic receptor in chronic neuropathic and inflammatory pain: Studies in transgenic mice. Biochem. Pharmacol. 2013, 86, 1201-1207.
[14] Li, D.H.; Yan, Y.R.; Yu, L.Z.; Duan, Y. Procaine attenuates pain behaviors of neuropathic pain model rats possibly via inhibiting JAK2/STAT3. Biomol. Ther. (Seoul). 2016, 24, 489-494.
[15] Liu, S.B.; Li, Q.; Zhang, M.T.; Mao, Q.L.; Hu, L.Y.; Wu, G.C.; Mi, W.L.; Wang, Y.Q. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci. Rep. 2016, 6, 28956.
[16] Lobo, B.W.; Lima, C.K.; Teixeira, M.S.; Silva, N.L.; Takiya, C.M.; Ramos, M.F.; Miranda, A.L.; Dellamora-Ortiz, G.M. Fish oil attenuates persistent inflammatory pain in rats through modulation of TNF-α and resolvins. Life Sci. 2016, 152, 30-37.
[17] Lasselin, J.; Kemani, M.K.; Kanstrup, M.; Olsson, G.L.; Axelsson, J.; Andreasson, A.; Lekander, M.; Wicksell, R.K. Low-grade inflammation May moderate the effect of behavioral treatment for chronic pain in adults. J. Behav. Med. 2016, 39, 916-924.
[18] Onodera, Y.; Kanao-Kanda, M.; Kanda, H.; Sasakawa, T.; Iwasaki, H.; Kunisawa, T. Pregnancy suppresses neuropathic pain induced by chronic constriction injury in rats through the inhibition of TNF-Α. J. Pain. Res. 2017, 10, 567-574.
[19] Kalynovska, N.; Adamek, P.; Palecek, J. TRPV1 receptors contribute to paclitaxel-induced c-Fos expression in spinal cord dorsal horn neurons. Physiol. Res. 2017, 66, 549-552.
[20] Wang, L.P.; Li, Z.M.; Tan, Y.Z.; Li, Q.; Yang, H.W.; Wang, P.X.; Lu, J.; Liu, P.Q. PARP1 interacts with STAT3 and retains active phosphorylated-STAT3 in nucleus during pathological myocardial hypertrophy. Mol. Cell Endocrinol. 2018, 474, 137-150. |