[1] |
Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712.
|
[2] |
De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem. 2011, 18, 1672–1703
|
[3] |
Gryko, K.; Kalinowska, M.; Ofman, P.; Choińska, R.; Świderski, G.; Świsłocka, R.; Lewandowski, W. Natural cinnamic acid derivatives: a comprehensive study on structural, anti/pro-oxidant, and environmental impacts. Materials (Basel). 2021, 14, 6098.
|
[4] |
Hu, S.; Yang, X.; Xue, J.; Chen, X.; Bai, X.H.; Yu, Z.H. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines. J. Sep. Sci. 2017, 40, 2959–2966.
|
[5] |
Jin, W.; Zhou, T.; Li, G. Recent advances of modern sample preparation techniques for traditional Chinese medicines. J. Chromatogr. A. 2019, 1606, 460377.
|
[6] |
Tambe, S.; Blott, H.; Fülöp, A.; Spang, N.; Flottmann, D.; Bräse, S.; Hopf, C.; Junker, H.D. Structure-performance relationships of phenyl cinnamic acid derivatives as MALDI-MS matrices for sulfatide detection. Anal. Bioanal. Chem. 2017, 409, 1569–1580.
|
[7] |
Yan, Y.; Chen, X.; Hu, S.; Bai, X. Applications of liquid-phase microextraction techniques in natural product analysis: a review. J. Chromatogr. A. 2014, 1368, 1–17.
|
[8] |
Vahid, S.; Ali, A.; Anahita, N. Application of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction techniques in analytical toxicology. J. Food Drug Anal. 2016, 24, 264–276.
|
[9] |
Hou-Kuang, Shih. A novel fatty-acid-based in-tube dispersive liquid-liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography-ultraviolet detection. Anal. Chimica Acta. 2015, 854, 70–77.
|
[10] |
Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A. 2006, 1116, 1–9.
|
[11] |
Jiang, Y.H.; Tang, T.T.; Cao, Z.; Shi, G.Y.; Zhou, T.S. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection. J. Sep. Sci. 2015, 38, 2158–2166.
|
[12] |
Mohebbi, A.; Ali Farajzadeh, M.; Nemati, M.; Sarhangi, N.; Afshar Mogaddam, M.R. Development of green sodium sulfate-induced solidification of floating organic droplets-dispersive liquid phase microextraction method: application to extraction of four antidepressants. Biomed. Chromatogr. 2019, 33, e4642.
|
[13] |
Hansen, F.A.; Pedersen-Bjergaard, S. Emerging extraction strategies in analytical chemistry. Anal. Chem. 2020, 92, 2–15.
|
[14] |
Jessop, P.G.; Heldebrant, D.J.; Li, X.W.; Eckert, C.A.; Liotta, C.L. Green chemistry: reversible nonpolar-to-polar solvent. Nature. 2005, 436, 1102.
|
[15] |
Erarpat, S.; Bodur, S.; Öztürk Er, E.; Bakırdere, S. Combination of ultrasound-assisted ethyl chloroformate derivatization and switchable solvent liquid-phase microextraction for the sensitive determination of l-methionine in human plasma by GC-MS. J. Sep. Sci. 2020, 43, 1100–1106.
|
[16] |
Wang, X.P.; Wang, R.Q.; Pan, X.Y.; Xing, R.R.; Yang, L.; Chen, X.; Hu, S. Preconcentration of liposoluble constituents in Salvia Miltiorrhiza using acid-assisted liquid phase microextraction based on a switchable deep eutectic solvent. J. Chromatogr. A. 2022, 1666, 462858.
|
[17] |
Lebedinets, S.; Vakh, C.; Cherkashina, K.; Pochivalov, A.; Moskvin, L.; Bulatov, A. Stir membrane liquid phase microextraction of tetracyclines using switchable hydrophilicity solvents followed by high-performance liquid chromatography. J. Chromatogr. A. 2020, 1615, 460743.
|
[18] |
Musarurwa, H.; Tavengwa, N.T. Switchable solvent-based micro-extraction of pesticides in food and environmental samples. Talanta. 2021, 224, 121807.
|
[19] |
Hassan, M.; Uzcan, F.; Alshana, U.; Soylak, M. Switchable-hydrophilicity solvent liquid-liquid microextraction prior to magnetic nanoparticle-based dispersive solid-phase microextraction for spectrophotometric determination of erythrosine in food and other samples. Food Chem. 2021, 348, 129053.
|
[20] |
Hu, S.; Xue, J.; Yang, X.; Chen, X.; Wang, R.Q.; Bai, X.H. Sodium dodecyl sulfate sensitized switchable solvent liquid-phase microextraction for the preconcentration of protoberberine alkaloids in Rhizoma coptidis. J Sep Sci. 2018, 18, 3614–3621.
|
[21] |
Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Use of switchable solvents in the microextraction context. Talanta. 2015, 131, 645–649.
|
[22] |
Ezoddin, M.; Abdi, K.; Lamei, N. Development of air assisted liquid phase microextraction based on switchable-hydrophilicity solvent for the determination of palladium in environmental samples. Talanta. 2016, 153, 247–252.
|