[1] |
Ezzedine, K.; Guinot, C.; Mauger, E.; Pistone, T.; Rafii, N.; Receveur, M.C.; Galan, P.; Hercberg, S.; Malvy, D. Expatriates in high-UV index and tropical countries: Sun exposure and protection behavior in 9, 416 French adults. J. Travel. Med. 2007, 14, 85–91.
|
[2] |
Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928.
|
[3] |
Niu, C.; Aisa, H.A. Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo. Molecules. 2017, 22, 1303.
|
[4] |
Saeedi, M.; Eslamifar, M.; Khezri, K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother. 2019, 110, 582–593.
|
[5] |
Desmedt, B.; Ates, G.; Courselle, P.; de Beer, J.O.; Rogiers, V.; Hendrickx, B.; Deconinck, E.; de Paepe, K. In vitro dermal absorption of hydroquinone: protocol validation and applicability on illegal skin-whitening cosmetics. Ski. Pharmacol. Physiol. 2017, 29, 300–308.
|
[6] |
Promden, W.; Viriyabancha, W.; Monthakantirat, O.; Umehara, K.; Noguchi, H.; De-Eknamkul, W. Correlation between the potency of flavonoids on mushroom tyrosinase inhibitory activity and melanin synthesis in melanocytes. Molecules. 2018, 23, 1403.
|
[7] |
Higgs, J.; Wasowski, C.; Marcos, A.; Jukič, M.; Paván, C.H.; Gobec, S.; de Tezanos Pinto, F.; Colettis, N.; Marder, M. Chalcone derivatives: synthesis, in vitro and in vivo evaluation of their anti-anxiety, anti-depression and analgesic effects. Heliyon. 2019, 5, e01376.
|
[8] |
Sabina, X.J.; Karthikeyan, J.; Velmurugan, G.; Tamizh, M.M.; Shetty, A.N. Design and in vitro biological evaluation of substituted chalcones synthesized from nitrogen mustards as potent microtubule targeted anticancer agents. New J. Chem. 2017, 41, 4096–4109.
|
[9] |
Venkatesh, T.; Bodke, Y.D. Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med. Chem. 2016, 6, 440–448.
|
[10] |
Syahri, J.; Yuanita, E.; Nurohmah, B.A.; Armunanto, R.; Purwono, B. Chalcone analogue as potent anti-malarial compounds against Plasmodium falciparum: Synthesis, biological evaluation, and docking simulation study. Asian Pac. J. Trop. Biomed. 2017, 7, 675–679.
|
[11] |
Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; Andrade, C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem. 2017, 137, 126–138.
|
[12] |
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: a review. Curr. Med. Chem. 2012, 19, 209–225.
|
[13] |
Akhtar, M.N.; Sakeh, N.M.; Zareen, S.; Gul, S.; Lo, K.M.; Ul-Haq, Z.; Shah, S.A.A.; Ahmad, S. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship. J. Mol. Struct. 2015, 1085, 97–103.
|
[14] |
Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry. 2004, 65, 1389–1395.
|
[15] |
Hsu, K.D.; Chan, Y.H.; Chen, H.J.; Lin, S.P.; Cheng, K.C. Tyrosinase-based TLC Autography for anti-melanogenic drug screening. Sci. Rep. 2018, 8, 401.
|
[16] |
Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the importance of a 2, 4-substituted resorcinol moiety. Bioorg. Med. Chem. 2005, 13, 433–441.
|
[17] |
Bhanja Dey, T.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: a review. Trends Food Sci. Technol. 2016, 53, 60–74.
|
[18] |
Garcia-Jimenez, A.; Teruel-Puche, J.A.; Garcia-Ruiz, P.A.; Saura-Sanmartin, A.; Berna, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase. PLoS One. 2017, 12, e0187845.
|
[19] |
Mohan, V.R.; Doss, A.; Tresina, P.S. Ethnomedical Plants with Therapeutic Properties, Oakville. Apple Academic Press Inc. 2019, 196–202.
|
[20] |
Duval, R.E.; Clarot, I.; Dumarcay-Charbonnier, F.; Fontanay, S.; Marsura, A. Interest of designed cyclodextrin-tools in gene delivery. Ann. Pharm. Françaises. 2012, 70, 360–369.
|
[21] |
Boukes, G.J.; Koekemoer, T.C.; van de Venter, M.; Govender, S. Cytotoxicity of thirteen South African macrofungal species against five cancer cell lines. S. Afr. N. J. Bot. 2017, 113, 62–67.
|
[22] |
Nithitanakool, S.; Pithayanukul, P.; Bavovada, R.; Saparpakorn, P. Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract. Molecules. 2009, 14, 257–265.
|