中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (2): 146-156.DOI: 10.5246/jcps.2021.02.012
周艳1, 宋恒文1, 邵志超1, 尹博民2, 付西美3, 谢典佑3, 韦利军1,*()
收稿日期:
2020-09-11
修回日期:
2020-10-15
接受日期:
2020-11-08
出版日期:
2021-02-28
发布日期:
2021-02-27
通讯作者:
韦利军
作者简介:
基金资助:
Yan Zhou1, Hengwen Song1, Zhichao Shao1, Bomin Yin2, Ximei Fu3, Dianyou Xie3, Lijun Wei1,*()
Received:
2020-09-11
Revised:
2020-10-15
Accepted:
2020-11-08
Online:
2021-02-28
Published:
2021-02-27
Contact:
Lijun Wei
摘要:
QHRD107是细胞周期蛋白依赖性激酶(CDK)9的特异性抑制剂。体外对白血病细胞增殖具有高度抑制作用, 在急性髓系白血病异种移植模型体内显著抑制肿瘤细胞生长, 并能显著延长小鼠寿命。Molm-13异种移植模型单次灌胃给予QHRD107后, QHRD107迅速被吸收并靶向性分布至肿瘤组织, 肿瘤半衰期(T1/2)较血浆延长3倍。伴随着肿瘤组织中高浓度QHRD107的暴露, 抗凋亡蛋白Mcl-1 mRNA快速下调, Ki-67细胞表达降低证明肿瘤细胞凋亡。研究结果表明治疗剂量下的QHRD107对AML细胞具有显著的抗肿瘤活性。
Supporting:
周艳, 宋恒文, 邵志超, 尹博民, 付西美, 谢典佑, 韦利军. 一种新的细胞周期蛋白依赖性激酶(CDK)9抑制剂QHRD107对急性髓系白血病的临床前疗效[J]. 中国药学(英文版), 2021, 30(2): 146-156.
Yan Zhou, Hengwen Song, Zhichao Shao, Bomin Yin, Ximei Fu, Dianyou Xie, Lijun Wei. Preclinical efficacy of a novel cyclin-dependent kinase 9 inhibitor, QHRD107 against acute myeloid leukemia[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 146-156.
Figure 1. In vivo antitumor efficacy of QHRD107 in three xenograft models and one orthotopic model. (A) Tumor volume at different days in Molm-13 tumor bearing mice receiving specific treatment (n = 10). (B) Tumor volume at different days in HL-60 tumor bearing mice receiving specific treatment (n = 10). (C) Tumor volume at different days in MV-4-11 tumor bearing mice receiving specific treatment (n = 10). (D) Kaplan-Meier survival plot of Molm-13 orthotopic model treated with vehicle, Ara-C and QHRD107. Data in A to C are shown starting from the first day of dosing and were presented as mean ± SEM. Statistical analysis was done as described in Materials and Methods. P values are relative to the appropriate vehicle control in each case.
Figure 2. Down-regulation of apoptosis-related biomarker was co-related with QHRD107 exposure in tumor. (A) Pharmacokinetic characterization of plasma and tumor concentration and its relationship with Mcl-1 mRNA expression after oral administration of QHRD107 at 50 mg/kg in tumor bearing mice (n = 3). (B) LC-MS/MS chromatogram of QHRD107 (named as LS007 during discovery stage) with Tolbutamide as IS (upper) 1 h plasma sample after administration, (lower) 1 h tumor sample after administration. Data were presented as mean ± SD. Statistical analysis was done as described in Materials and methods. *Denoted P < 0.05.
Figure 3. IHC staining analysis showing suppression of Ki-67 in tumor bearing mice after treatment of QHRD107. (A) IHC staining analysis of Ki-67 expression in tumor bearing mice (n = 3). (B) Statistical bar graph based on Ki-67 score (percentage of Ki-67 positive cells). NOD/SCID mice were implanted with Molm-13 tumor cells and received a single oral dose of QHRD107 at 50 mg/kg. Tumor tissues were harvested at the designated times after dosing as described in Materials and methods. Tumor tissues from this study incubated with rabbit IgG isotype control were used as negative control. Tumor tissues from HCI-H69 xenograft model incubated with rabbit anti-human Ki67 antibody were used as positive control. Statistical significance of differences in percentage of Ki-67 positive cells between pre-dosing and different time points after treatment were determined by one-way ANOVA. *Denoted P < 0.05.
[1] |
Saultz, J.N.; Garzon, R. Acute myeloid leukemia: a concise review. J. Clin. Med. 2016, 5, 33.
|
[2] |
de Kouchkovsky, I.; Abdul-Hay, M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’. Blood Cancer J. 2016, 6, e441.
|
[3] |
Kumar, C.C. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer. 2011, 2, 95–107.
|
[4] |
Thein, M.S.; Ershler, W.B.; Jemal, A.; Yates, J.W.; Baer, M.R. Outcome of older patients with acute myeloid leukemia. Cancer. 2013, 119,2720–2727.
|
[5] |
Derolf, Å.R.; Kristinsson, S.Y.; Andersson, T.M.L.; Landgren, O.; Dickman, P.W.; Björkholm, M. Improved patient survival for acute myeloid leukemia: a population-based study of 9729 patients diagnosed in Sweden between 1973 and 2005. Blood. 2009, 113, 3666–3672.
|
[6] |
Franco, L.C.; Morales, F.; Boffo, S.; Giordano, A. CDK9: a key player in cancer and other diseases. J. Cell Biochem. 2018, 119, 1273–1284.
|
[7] |
Paparidis, N.F.D.S.; Durvale, M.C.; Canduri, F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Mol. BioSyst. 2017, 13, 246–276.
|
[8] |
Gregory, G.P.; Hogg, S.J.; Kats, L.M.; Vidacs, E.; Baker, A.J.; Gilan, O.; Lefebure, M.; Martin, B.P.; Dawson, M.A.; Johnstone, R.W.; Shortt, J. CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to induce durable apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo. Leukemia. 2015, 29, 1437.
|
[9] |
Albert, T.K.; Rigault, C.; Eickhoff, J.; Baumgart, K.; Antrecht, C.; Klebl, B.; Mittler, G.; Meisterernst, M. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Br. J. Pharmacol. 2014, 171,55–68.
|
[10] |
Rahaman, M.H.; Kumarasiri, M.; Mekonnen, L.B.; Yu, M.F.; Diab, S.; Albrecht, H.; Milne, R.W.; Wang, S.D. Targeting CDK9: a promising therapeutic opportunity in prostate cancer. Endocr. Relat. Cancer. 2016, 23, T211–T226.
|
[11] |
Morales, F.; Giordano, A. Overview of CDK9 as a target in cancer research. Cell Cycle. 2016, 15, 519–527.
|
[12] |
Wang, S.D.; Fischer, P.M. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol. Sci. 2008, 29, 302–313.
|
[13] |
Bose, P.; Simmons, G.L.; Grant, S. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert. Opin. Investig. Drugs. 2013, 22, 723–738.
|
[14] |
Jin, J.S.; Lin, L.F.; Chen, J.C.; Huang, C.C.; Sheu, J.H.; Chen, W.; Tsao, T.Y.; Hsu, C.W. Increased cyclin T1 expression as a favorable prognostic factor in treating gastric adenocarcinoma. Oncol. Lett. 2015, 10, 3712–3718.
|
[15] |
Gargano, B.; Amente, S.; Majello, B.; Lania, L. P-TEFb is a crucial Co-factor for myc transactivation. Cell Cycle. 2007, 6, 2031–2037.
|
[16] |
Kanazawa, S.; Soucek, L.; Evan, G.; Okamoto, T.; Matija Peterlin, B. C-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene. 2003, 22, 5707.
|
[17] |
Kaufmann, S.H.; Karp, J.E.; Svingen, P.A.; Krajewski, S.; Burke, P.J.; Gore, S.D.; Reed, J.C. Elevated expression of the apoptotic regulator mcl-1 at the time of leukemic relapse. Blood. 1998, 91, 991–1000.
|
[18] |
Garcia-Cuellar, M.P.; Breitinger, C.; Hetzner, K.; Zeitlmann, L.; Borkhardt, A.; Slany, R.K. Efficacy of cyclin-dependent-kinase 9 inhibitors in a murine model of mixed-lineage leukemia. Leukemia. 2014, 28, 1427.
|
[19] |
Mueller, D.; García-Cuéllar, M.P.; Bach, C.; Buhl, S.; Maethner, E.; Slany, R.K. Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol. 2009, 7, e1000249.
|
[20] |
Walsby, E.; Pratt, G.; Shao, H.; Abbas, A.Y.; Fischer, P.M.; Bradshaw, T.D.; Brennan, P.; Fegan, C.; Wang, S.D.; Pepper, C. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget. 2014, 5, 375–385.
|
[21] |
Rahaman, M.H.; Yu, Y.Y.; Zhong, L.J.; Adams, J.; Lam, F.; Li, P.; Noll, B.; Milne, R.; Peng, J.; Wang, S.D. CDKI-73: an orally bioavailable and highly efficacious CDK9 inhibitor against acute myeloid leukemia. Investig. New Drugs. 2019, 37, 625–635.
|
[22] |
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001, 25, 402–408.
|
[23] |
Krajewski, S.; Bodrug S.; Krajewska M.; Shabaik A.; Gascoyne R.; Berean K.Reed J. C. Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am. J. Pathol. 1995, 146, 1309–1319.
|
[24] |
Prasain, J.K.; Peng, N.; Acosta, E.; Moore, R.; Arabshahi, A.; Meezan, E.; Barnes, S.; Wyss, J.M. Pharmacokinetic study of puerarin in rat serum by liquid chromatography tandem mass spectrometry. Biomed. Chromatogr. 2007, 21, 410–414.
|
[25] |
Hua, M.; Ji, X.; Li, R.; Ji, S.; Zhou, T. Pharmacokinetic-pharmacodynamic modeling of the anticancer effect of TM208 on non-small cell lung cancer xenograft. J. Chin. Pharm. Sci. 2016, 25, 502–511.
|
[26] |
Garriga, J.; Bhattacharya, S.; Calbó, J.; Marshall, R.M.; Truongcao, M.; Haines, D.S.; Graña, X. CDK9 is constitutively expressed throughout the cell cycle, and its steady-state expression is independent of SKP2. Mol. Cell Biol. 2003, 23, 5165–5173.
|
[27] |
Li, K.L.; Bray, S.C.; Iarossi, D.; Adams, J.; Zhong, L.J.; Noll, B.; Rahaman, M.H.; Richmond, J.; To, L.B.; Lewis, I.D.; Lock, R.B.; Wang, S.D.; D'Andrea, R.J. Investigation of a novel cyclin-dependent-kinase (CDK) inhibitor cdki-73 as an effective treatment option for MLL-AML. Blood. 2015, 126, 1365.
|
[1] | 杨晗春, 成斐, 黄娟娟. 艾曲波帕对难治性原发免疫性血小板减少症的疗效及其对细胞免疫功能的影响[J]. 中国药学(英文版), 2023, 32(9): 736-743. |
[2] | 杨雁芳, 韦玮, 张雷, 徐嵬, 杨秀伟. UPLC-MS/MS法测定都梁丸中37个成分在大鼠体内的药代动力学[J]. 中国药学(英文版), 2023, 32(7): 560-573. |
[3] | 朱愿超, 陈晨, 胡欣. 比阿培南在高龄老年患者中的应用[J]. 中国药学(英文版), 2023, 32(2): 145-152. |
[4] | 袁叶, 李亚男, 赵晴, 于博, 杨秀岭. 基于PK/PD模型和蒙特卡洛模拟评价头孢曲松给药方案[J]. 中国药学(英文版), 2022, 31(5): 382-388. |
[5] | 李春杏, 朱元明, 刘桦, 徐钊. 促动力药联合质子泵抑制剂与单独质子泵抑制剂治疗胃食管反流疾病疗效的荟萃分析[J]. 中国药学(英文版), 2021, 30(4): 347-356. |
[6] | 李晓娇, 栾树鑫, 张洪, 万洪泉, 陈红, 刘成娇, 刘畅, 丁艳华. 单剂量长效利培酮注射液在中国精神分裂症患者体内的药代动力学、药效学和安全性研究[J]. 中国药学(英文版), 2021, 30(3): 206-217. |
[7] | 陈倩, 赵旭阳, 宋宇靖, 李少一, 雷婉钰, 马维宁, 黄卓. 鉴定用于评估切除性癫痫手术后癫痫发作情况的血清生物标志物[J]. 中国药学(英文版), 2020, 29(8): 528-541. |
[8] | 杨秀伟, 张友波, 徐嵬. 静脉和灌胃给予大鼠茴香酸对羟基苯乙酯的RP-HPLC法测定和药代动力学研究[J]. 中国药学(英文版), 2020, 29(11): 804-812. |
[9] | 杨东升, 马玲云, 牛剑钊, 许鸣镝. 美国授权仿制药应用简介[J]. 中国药学(英文版), 2019, 28(6): 439-445. |
[10] | 杨辉, 胡小鹏, 杨晓勇, 刘航, 任亮, 王玮, 刘丽宏, 张小东. 肾移植术后糖皮质激素和他克莫司的药代动力学相互作用[J]. 中国药学(英文版), 2019, 28(4): 257-263. |
[11] | 刘鑫, 张波, 梅丹, 黄凯. HPLC-MS/MS法测定大鼠血浆中异绿原酸B浓度及其在药代动力学研究中的应用[J]. 中国药学(英文版), 2019, 28(3): 167-173. |
[12] | 杨东升, 马玲云, 牛剑钊, 许鸣镝. 美国国家药品编码应用简介[J]. 中国药学(英文版), 2019, 28(3): 203-208. |
[13] | 张玲玲, 张慧文, 武世奎, 刘宏, 李静媛, 董馨, 夏慧敏, 王焕芸. UPLC-Q-Exactive-MS 同时测定三臣丸中六种活性成分的药代动力学研究[J]. 中国药学(英文版), 2019, 28(11): 812-824. |
[14] | 欧阳文鹃, 张亚兰, 徐平声, 戴智勇, 马虹英, 秦群. 国产注射用甲磺酸帕珠沙星在健康人体的药代动力学研究[J]. 中国药学(英文版), 2019, 28(1): 40-48. |
[15] | 常馨予, 郭桂明, 范峥, 王宏蕾, 刘洋, 韩丽娟. UPLC-MS/MS法测定黄芪桂枝五物汤在大鼠血浆中两种活性成分及药代动力学研究[J]. 中国药学(英文版), 2018, 27(4): 263-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||