[1] |
Zhang, Q. Using Monte Carlo simulation (MCS) to evaluate and optimize dosing regimens against antimicrobial agents for Escherichia coli infection. Pract. J. Med. Pharm. 2017, 34, 635–637.
|
[2] |
Zhu, L. The Monte Carlo method and application. Central China Normal University. 2014.
|
[3] |
Roberts, J.A.; Kirkpatrick, C.M.; Lipman, J. Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J. Antimicrob. Chemother. 2011, 66, 227–231.
|
[4] |
Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs. Int. J. Antimicrob. Agents. 2002, 19, 355–358.
|
[5] |
Frei, C.R.; Wiederhold, N.P.; Burgess, D.S. Antimicrobial breakpoints for gram-negative aerobic bacteria based on pharmacokinetic-pharmacodynamic models with Monte Carlo simulation. J. Antimicrob. Chemother. 2008, 61, 621–628.
|
[6] |
Yu, G.H.; Yi, Z.G.; G, C.X.; Zhang, G.P.; Li, F. Monte Carlo simulation of PK/PD based on imipenem/cistatin dosing regimen. Chin. J. Hosp. Pharm. 2009, 29, 1495–1497.
|
[7] |
Zhou, J.C.; Liu, C.S.; Zhou, D.H.; Tong, W.H.; Wang, D. Evaluation of ceftriaxone dosing regimens by Monte Carlo simulation. Hebei Med. J. 2016, 38, 614–617.
|
[8] |
Zhang, J.; Lv, Y.; Yu, J.K.; Guan, X.D. Huang, Y.Z. Expert consensus on the clinical application of pharmacokinetic/pharmacodynamic theory of antimicrobial drugs. Chin. J. Tuberc. Respir. Dis. 2018, 41, 409–446.
|
[9] |
Jia. X. M. Optimization of oral dosage regimen for ceftriaxone base on PK/PD theory. Zhengzhou University. 2017.
|
[10] |
Li, Y.N.; Guo, X.; Yuan, Y.; Dong, W.C.; Yang, X.L. Determination of free ceftriaxone concentration and its application in predicting hung tissue concentratio. Chin. Pharm. J. 2021, 30, 578–1589.
|
[11] |
Zhang, H.L.; Huang, Z.G.; Qiu, Y. Pharmacokinetic and pharmacodynamic models combination with monte carlo simulation for optimization of vancomycin administration in children with me- thicillin-resistant staphylococcus aureus infection. Chin. Pharm. J. 2017, 52, 217–220.
|
[12] |
Zheng, J.L.; Wang, Z.G.; Liang, L.J.; Li, S.Q.; Lai, J.M.; Hua, Z.P. Study and evaluation of the concentration distribution and antibacterial activity of ceftriaxone sodium in the bile of patients with biliary tract stones. J. Chin. Clinicians (Electronic Edition). 2012, 6, 5270–5272.
|
[13] |
Song, X.J.; Liu, Y.N.; Wang, R. Advances in studies on mutant prevention concentration rationale for antimicrobial agents. Drug Eval. Res. 2010, 33, 13–18.
|
[14] |
Wang, M.N.; Li, F.F.; Li, Y.C.; Ran, Y.T.; Li, X.T. Evaluation of the cephalosporin antimicrobial drug administration program using Monte Carlo simulation. Chin. Pharm. J. 2018, 53, 725–728.
|
[15] |
Lodise, T.P. Jr, Nau, R. Jr, Kinzig, M. Jr, Jones, R.N. Jr, Drusano, G.L. Jr, Sörgel, F. Jr. Comparison of the probability of target attainment between ceftriaxone and cefepime in the cerebrospinal fluid and serum against Streptococcus pneumoniae. Diagn. Microbiol. Infect. Dis. 2007, 58, 445–452.
|
[16] |
Neves, D.V.; Vieira, C.P.; Rocha, A.; Lanchote, V.L. Therapeutic doses of eltrombopag do not inhibit hepatic BCRP in healthy volunteers: intravenous ceftriaxone as a model. J. Pharm. Pharm. Sci. 2018, 21, 236–246.
|