[1] |
Wang, F.; Lu, W.; Zhang, T.; Dong, J.Y.; Gao, H.P.; Li, P.F.; Wang, S.C.; Zhang, J. Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg. Med. Chem. 2013, 21, 6973–6980.
|
[2] |
Peart, M.J.; Smyth, G.K.; van Laar, R.K.; Bowtell, D.D.; Richon, V.M.; Marks, P.A.; Holloway, A.J.; Johnstone, R.W. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad Sci. U.S.A. 2005, 102, 3697–3702.
|
[3] |
Zagni, C.; Floresta, G.; Monciino, G.; Rescifina, A. The search for potent, small-molecule HDACIs in cancer treatment: a decade after vorinostat. Med. Res. Rev. 2017, 37, 1373–1428.
|
[4] |
Manal, M.; Chandrasekar, M.J.N.; Gomathi Priya, J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: a critical review. Bioorg. Chem. 2016, 67, 18–42.
|
[5] |
Zagni, C.; Citarella, A.; Oussama, M.; Rescifina, A.; Maugeri, A.; Navarra, M.; Scala, A.; Piperno, A.; Micale, N. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors bearing a pyrazole scaffold and a cinnamoyl linker. Int. J. Mol. Sci. 2019, 20, E945.
|
[6] |
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 2014, 124, 30–39.
|
[7] |
Roy, R.; Ria, T.; RoyMahaPatra, D.; Sk, U.H. Single inhibitors versus dual inhibitors: role of HDAC in cancer. ACS Omega. 2023, 8, 16532–16544.
|
[8] |
Li, Y.X.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. C.S. Harb. Perspect. Med. 2016, 6, 026831.
|
[9] |
Dangi, N.; Sharma, S. Cancer chemotherapy with novel bioactive natural products. J. Chin. Pharm. Sci. 2022, 31, 589-607.
|
[10] |
Tazzari, V.; Cappelletti, G.; Casagrande, M.; Perrino, E.; Renzi, L.; Del Soldato, P.; Sparatore, A. New aryldithiolethione derivatives as potent histone deacetylase inhibitors. Bioorg. Med. Chem. 2010, 18, 4187–4194.
|
[11] |
Cheng,W.W.; Zhang, D.M.; Zheng, Q.; Li, Z,J.; Meng, X.B. Design, synthesis and biological evaluation of novel HDAC inhibitors: sulphur-containing zinc binding groups. J. Chin. Pharm. Sci. 2019, 28, 408–421.
|
[12] |
Yao, Y.W.; Liao, C.Z.; Li, Z.; Wang, Z.; Sun, Q.; Liu, C.P.; Yang, Y.; Tu, Z.C.; Jiang, S. Design, synthesis, and biological evaluation of 1,3-disubstituted-pyrazole derivatives as new class I and IIb histone deacetylase inhibitors. Eur. J. Med. Chem. 2014, 86, 639–652.
|
[13] |
Cai, M.; Hu, J.; Tian, J.L.; Yan, H.; Zheng, C.G.; Hu, W.L. Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities. Chin. Chem. Lett. 2015, 26, 675–680.
|
[14] |
Peng, F.W.; Wu, T.T.; Ren, Z.W.; Xue, J.Y.; Shi, L. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg. Med. Chem. Lett. 2015, 25, 5137–5141.
|
[15] |
Yang, W.; Li, L.X.; Ji, X.; Wu, X.W.; Su, M.B.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of 4-anilinothieno[2, 3-d]pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorg. Med. Chem. 2014, 22, 6146–6155.
|
[16] |
Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: from bench to clinic. J. Med. Chem. 2008, 51, 3330.
|
[17] |
Jin, K.; Li, S.S.; Li, X.G.; Zhang, J.; Xu, W.F.; Li, X.C. Design, synthesis and preliminary biological evaluation of indoline-2,3-dione derivatives as novel HDAC inhibitors. Bioorg. Med. Chem. 2015, 23, 4728–4736.
|
[18] |
Liu, T.T.; Wan, Y.C.; Xiao, Y.L.; Xia, C.C.; Duan, G.Y. Dual-target inhibitors based on HDACs: novel antitumor agents for cancer therapy. J. Med. Chem. 2020, 63, 8977–9002.
|
[19] |
Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics. 2013, 7, 47–60.
|
[20] |
Vaughan, R.M.; Kupai, A.; Rothbart, S.B. Chromatin regulation through ubiquitin and ubiquitin-like histone modifications. Trends Biochem. Sci. 2021, 46, 258–269.
|
[21] |
Fulton, L.A.; Seitz, W.R.; Planalp, R.P. Aggregation of poly (N-isopropylacrylamide) homopolymer by Cu2+ and Zn2+: Significance for ratiometric metal ion indicators. Polyhedron. 2020, 191, 114797.
|
[22] |
Galster, M.; Löppenberg, M.; Galla, F.; Börgel, F.; Agoglitta, O.; Kirchmair, J.; Holl, R. Phenylethylene glycol-derived LpxC inhibitors with diverse Zn2+-binding groups. Tetrahedron. 2019, 75, 486–509.
|
[23] |
Agrawal, A.; de Oliveira, C.A.; Cheng, Y.; Jacobsen, J.A.; McCammon, J.A.; Cohen, S.M. Thioamide hydroxypyrothiones supersede amide hydroxypyrothiones in potency against anthrax lethal factor. J. Med. Chem. 2009, 52, 1063–1074.
|
[24] |
Cheshmedzhieva, D.; Toshev, N.; Gerova, M.; Petrov, O.; Dudev, T. Hydroxamic acid derivatives as histone deacetylase inhibitors: a DFT study of their tautomerism and metal affinities/selectivities. J. Mol. Model. 2018, 24, 114.
|
[25] |
Edem, P.E.; Czorny, S.; Valliant, J.F. Synthesis and evaluation of radioiodinated acyloxymethyl ketones as activity-based probes for cathepsin B. J. Med. Chem. 2014, 57, 9564–9577.
|
[26] |
Shieh, P.; Hangauer, M.J.; Bertozzi, C.R. Fluorogenic azidofluoresceins for biological imaging. J. Am. Chem. Soc. 2012, 134, 17428–17431.
|
[27] |
Korkmaz, I.N.; Özdemir, H. Synthesis and anticancer potential of new hydroxamic acid derivatives as chemotherapeutic agents. Appl. Biochem. Biotechnol. 2022, 194, 6349–6366.
|
[28] |
Zagni, C.; Citarella, A.; Oussama, M.; Rescifina, A.; Maugeri, A.; Navarra, M.; Scala, A.; Piperno, A.; Micale, N. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors bearing a pyrazole scaffold and a cinnamoyl linker. Int. J. Mol. Sci. 2019, 20, E945.
|
[29] |
Khetmalis, Y.M.; Shree, B.; Kumar, B.V.S.; Schweipert, M.; Debarnot, C.; Ashna, F.; Sankaranarayanan, M.; Trinath, J.; Sharma, V.; Meyer-Almes, F.J.; Sekhar, K.V.G.C. Design, synthesis, and biological evaluation of tetrahydroisoquinoline based hydroxamate derivatives as HDAC 6 inhibitors for cancer therapy. J. Mol. Struct. 2023, 1278, 134952.
|
[30] |
Heimburg, T.; Chakrabarti, A.; Lancelot, J.; Marek, M.; Melesina, J.; Hauser, A.T.; Shaik, T.B.; Duclaud, S.; Robaa, D.; Erdmann, F.; Schmidt, M.; Romier, C.; Pierce, R.J.; Jung, M.; Sippl, W. Structure-based design and synthesis of novel inhibitors targeting HDAC8 from schistosoma mansoni for the treatment of schistosomiasis. J. Med. Chem. 2016, 59, 2423–2435.
|
[31] |
Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: a critical review. Eur. J. Med. Chem. 2019, 173, 117–153.
|
[32] |
Riccardi, C.; Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 2006, 1, 1458–1461.
|
[33] |
Feng, T.T.; Wang, H.; Su, H.; Lu, H.; Yu, L.Q.; Zhang, X.J.; Sun, H.P.; You, Q.D. Novel N-hydroxyfurylacrylamide-based histone deacetylase (HDAC) inhibitors with branched CAP group (Part 2). Bioorg. Med. Chem. 2013, 21, 5339–5354.
|