中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (4): 305-315.DOI: 10.5246/jcps.2024.04.023
收稿日期:
2023-07-04
修回日期:
2023-09-05
接受日期:
2023-10-25
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
代丽娟
Yonghao Sang1, Jie Yun2, Lijuan Dai2,*(), Liqun Song2
Received:
2023-07-04
Revised:
2023-09-05
Accepted:
2023-10-25
Online:
2024-04-30
Published:
2024-04-30
Contact:
Lijuan Dai
Supported by:
摘要:
慢性肾脏病(CKD)作为一个公共卫生问题, 发病率高, 死亡率高, 寻找有效控制发展的治疗手段是亟待解决的难题。"肠-肾轴"理论的核心观点认为, 随着CKD的进展, 尿毒症毒素(UTs)逐渐蓄积, 肠道屏障功能受损, 肠道菌群失调; 反过来, 失调的肠道菌群和受损的肠道屏障通过加剧UTs的蓄积和诱导全身炎症反应等途径加重肾脏的损伤。基于此理论指导下的中药灌肠在治疗CKD上取得了一定的进展, 本文结合国内外相关文献对"肠-肾轴"理论和运用中药灌肠联合基础治疗、中药灌肠联合结肠透析和中药灌肠联合口服中药等进行综述, 以期为后续CKD的治疗提供新思路、新靶点。
Supporting:
桑永浩, 贠捷, 代丽娟, 宋立群. 中药灌肠治疗慢性肾脏病的研究进展[J]. 中国药学(英文版), 2024, 33(4): 305-315.
Yonghao Sang, Jie Yun, Lijuan Dai, Liqun Song. Chinese herbal enema therapy for the treatment of chronic kidney disease[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(4): 305-315.
[1] |
Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. . Lancet. 2017, 389, 1238–1252.
|
[2] |
Wilson, S.; Mone, P.; Jankauskas, S.S.; Gambardella, J.; Santulli, G. Chronic kidney disease: definition, updated epidemiology, staging, and mechanisms of increased cardiovascular risk. J. Clin. Hypertens. 2021, 23, 831–834.
|
[3] |
Crews, D.C.; Bello, A.K.; Saadi, G.; Li, P.K.T.; Garcia-Garcia, G.; Andreoli, S.; Crews, D.; Kalantar-Zadeh, K.; Kernahan, C.; Kumaraswami, L.; Saadi, G.; Strani, L. C. Burden, access, and disparities in kidney disease. J. Nephrol. 2019, 32, 1–8.
|
[4] |
Jager, K.J.; Fraser, S.D.S. The ascending rank of chronic kidney disease in the global burden of disease study. Nephrol. Dial. Transplant. 2017, 32, ii121–ii128.
|
[5] |
Lv, J.C.; Zhang, L.X. Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol. 2019, 1165, 3–15.
|
[6] |
Zhang, L.X.; Wang, F.; Wang, L.; Wang, W.K.; Liu, B.C.; Liu, J.; Chen, M.H.; He, Q.; Liao, Y.H.; Yu, X.Q.; Chen, N.; Zhang, J.E.; Hu, Z.; Liu, F.Y.; Hong, D.Q.; Ma, L.J.; Liu, H.; Zhou, X.L.; Chen, J.H.; Pan, L.; Wang, H.Y. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012, 379, 815–822.
|
[7] |
Zhang, L.X.; Wang, H.B.; Long, J.Y.; Shi, Y.; Bai, K.H.; Jiang, W.S.; He, X.X.; Zhou, Z.Y.; Wang, J.W.; Wang, F.; Huang, J.F.; Zhao, M.H. China kidney disease network (CK-NET) 2014 annual data report. Am. J. Kidney Dis. 2017, 69, A4.
|
[8] |
Jha, V.; Wang, A.Y.M.; Wang, H.Y. The impact of CKD identification in large countries: the burden of illness. Nephrol. Dial. Transplant. 2012, 27, iii32–iii38.
|
[9] |
Zhang, L.X.; Wang, H.Y. Chronic kidney disease epidemic: cost and health care implications in China. Semin. Nephrol. 2009, 29, 483–486.
|
[10] |
Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am. J. Kidney Dis. 2003, 41, 1–12.
|
[11] |
Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of chronic kidney disease in the United States. JAMA. 2007, 298, 2038–2047.
|
[12] |
Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; Brown, J.C.; Friedman, J.; He, J.W.; Heuton, K.R.; Holmberg, M.; Patel, D.J.; Reidy, P.; Carter, A.; Cercy, K.; Chapin, A.; Douwes-Schultz, D.; Frank, T.; Goettsch, F.; Liu, P.Y.; Nandakumar, V.; Reitsma, M.B.; Reuter, V.; Sadat, N.; Sorensen, R.J.D.; Srinivasan, V.; Updike, R.L.; York, H.; Lopez, A.D.; Lozano, R.; Lim, S.S.; Mokdad, A.H.; Vollset, S.E.; Murray, C.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018, 392, 2052–2090.
|
[13] |
Meijers, B.K.I.; Evenepoel, P. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol. Dial. Transplant. 2011, 26, 759–761.
|
[14] |
Lu, P.H.; Yu, M.C.; Wei, M.J.; Kuo, K.L. The therapeutic strategies for uremic toxins control in chronic kidney disease. Toxins. 2021, 13, 573.
|
[15] |
Young, V.B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017, 356, j831.
|
[16] |
Wu, I.W.; Lin, C.Y.; Chang, L.C.; Lee, C.C.; Chiu, C.Y.; Hsu, H.J.; Sun, C.Y.; Chen, Y.C.; Kuo, Y.L.; Yang, C.W.; Gao, S.S.; Hsieh, W.P.; Chung, W.H.; Lai, H.C.; Su, S.C. Gut microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease: discovery and validation study. Int. J. Biol. Sci. 2020, 16, 420–434.
|
[17] |
Pflughoeft, K.J.; Versalovic, J. Human microbiome in health and disease. Annu. Rev. Pathol. Mech. Dis. 2012, 7, 99–122.
|
[18] |
Pahl, M.V.; Vaziri, N.D. The chronic kidney disease-colonic axis. Semin. Dial. 2015, 28, 459–463.
|
[19] |
Runkle, E.A.; Mu, D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett. 2013, 337, 41–48.
|
[20] |
Vaziri, N.D.; Yuan, J.; Rahimi, A.; Ni, Z.M.; Said, H.; Subramanian, V.S. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol. Dial. Transplant. 2012, 27, 2686–2693.
|
[21] |
Vaziri, N.D.; Goshtasbi, N.; Yuan, J.; Jellbauer, S.; Moradi, H.; Raffatellu, M.; Kalantar-Zadeh, K. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am. J. Nephrol. 2012, 36, 438–443.
|
[22] |
Vaziri, N.D.; Yuan, J.; Norris, K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am. J. Nephrol. 2013, 37, 1–6.
|
[23] |
Vaziri, N.D.; Yuan, J.; Nazertehrani, S.; Ni, Z.M.; Liu, S.M. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am. J. Nephrol. 2013, 38, 99–103.
|
[24] |
Xie, F.; Sun, S.; Xu, A.; Zheng, S.; Xue, M.; Wu, P.; Zeng, J.H.; Bai, L. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-Jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway. Cell Death Dis. 2014, 5, e1006.
|
[25] |
Evenepoel, P.; Meijers, B.K.I.; Bammens, B.R.M.; Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009, 76, S12–S19.
|
[26] |
Tang, W.H.; Wang, Z.N.; Kennedy, D.J.; Wu, Y.P.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455.
|
[27] |
Lekawanvijit, S. Role of gut-derived protein-bound uremic toxins in cardiorenal syndrome and potential treatment modalities. Circ. J. 2015, 79, 2088–2097.
|
[28] |
Huang, Y.H.; Zhou, J.; Wang, S.B.; Xiong, J.C.; Chen, Y.; Liu, Y.; Xiao, T.L.; Li, Y.; He, T.; Li, Y.; Bi, X.J.; Yang, K.; Han, W.H.; Qiao, Y.; Yu, Y.L.; Zhao, J.H. Indoxyl sulfate induces intestinal barrier injury through IRF1-DRP1 axis-mediated mitophagy impairment. Theranostics. 2020, 10, 7384–7400.
|
[29] |
Ritz, E. Intestinal-renal syndrome: mirage or reality? Blood Purif. 2011, 31, 70–76.
|
[30] |
de Almeida Duarte, J.B.; de Aguilar-Nascimento, J.E.; Nascimento, M.; Nochi, R.J.Jr. Bacterial translocation in experimental uremia. Urol. Res. 2004, 32, 266–270.
|
[31] |
Baumgart, D.C.; Dignass, A.U. Intestinal barrier function. Curr. Opin. Clin. Nutr. Metab. Care. 2002, 5, 685–694.
|
[32] |
Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352.
|
[33] |
Kim, S.M.; Song, I.H. The clinical impact of gut microbiota in chronic kidney disease. Korean J. Intern. Med. 2020, 35, 1305–1316.
|
[34] |
Hsu, C.N.; Chang-Chien, G.P.; Lin, S.F.; Hou, C.Y.; Lu, P.C.; Tain, Y.L. Association of trimethylamine, trimethylamine N-oxide, and dimethylamine with cardiovascular risk in children with chronic kidney disease. J. Clin. Med. 2020, 9, 336.
|
[35] |
Kanemitsu, Y.; Mishima, E.; Maekawa, M.; Matsumoto, Y.; Saigusa, D.; Yamaguchi, H.; Ogura, J.; Tsukamoto, H.; Tomioka, Y.; Abe, T.; Mano, N. Comprehensive and semi-quantitative analysis of carboxyl-containing metabolites related to gut microbiota on chronic kidney disease using 2-picolylamine isotopic labeling LC-MS/MS. Sci. Rep. 2019, 9, 19075.
|
[36] |
Mishima, E.; Fukuda, S.; Mukawa, C.; Yuri, A.; Kanemitsu, Y.; Matsumoto, Y.; Akiyama, Y.; Fukuda, N.N.; Tsukamoto, H.; Asaji, K.; Shima, H.; Kikuchi, K.; Suzuki, C.; Suzuki, T.; Tomioka, Y.; Soga, T.; Ito, S.; Abe, T. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017, 92, 634–645.
|
[37] |
Rysz, J.; Franczyk, B.; Ławiński, J.; Olszewski, R.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The impact of CKD on uremic toxins and gut microbiota. Toxins. 2021, 13, 252.
|
[38] |
Wong, J.; Piceno, Y.M.; DeSantis, T.Z.; Pahl, M.; Andersen, G.L.; Vaziri, N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014, 39, 230–237.
|
[39] |
Tian, S.C.; Xue, J.; Song, H.; Du, Q. Regulatory effects of traditional Chinese medicine on intestinal flora. J. Chin. Pharm. Sci. 2020, 29, 161–175.
|
[40] |
Ma, Y.R.; Xin, M.Y.; Wu, J.L.; Wang, D.J.; Wang, H.; Wu, X.A. Changes in renal excretion pathways in rats with adenine-induced chronic renal failure. J. Chin. Pharm. Sci. 2021, 30, 319–333.
|
[41] |
Rukavina Mikusic, N.L.; Kouyoumdzian, N.M.; Choi, M.R. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch. 2020, 472, 303–320.
|
[42] |
Favero, C.; Carriazo, S.; Cuarental, L.; Fernandez-Prado, R.; Gomá-Garcés, E.; Perez-Gomez, M.V.; Ortiz, A.; Fernandez-Fernandez, B.; Sanchez-Niño, M.D. Phosphate, microbiota and CKD. Nutrients. 2021, 13, 1273.
|
[43] |
Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.M.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315.
|
[44] |
Wang, X.F.; Yang, S.T.; Li, S.H.; Zhao, L.; Hao, Y.L.; Qin, J.J.; Zhang, L.; Zhang, C.Y.; Bian, W.J.; Zuo, L.; Gao, X.; Zhu, B.L.; Lei, X.G.; Gu, Z.L.; Cui, W.; Xu, X.P.; Li, Z.M.; Zhu, B.Z.; Li, Y.; Chen, S.W.; Guo, H.Y.; Zhang, H.; Sun, J.; Zhang, M.; Hui, Y.; Zhang, X.L.; Liu, X.X.; Sun, B.W.; Wang, L.J.; Qiu, Q.L.; Zhang, Y.C.; Li, X.Q.; Liu, W.Q.; Xue, R.; Wu, H.; Shao, D.H.; Li, J.L.; Zhou, Y.J.; Li, S.C.; Yang, R.T.; Pedersen, O.B.; Yu, Z.Q.; Ehrlich, S.D.; Ren, F.Z. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020, 69, 2131–2142.
|
[45] |
Nakabayashi, I.; Nakamura, M.; Kawakami, K.; Ohta, T.; Kato, I.; Uchida, K.; Yoshida, M. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol. Dial. Transplant. 2011, 26, 1094–1098.
|
[46] |
Simenhoff, M.L.; Dunn, S.R.; Zollner, G.P.; Fitzpatrick, M.E.; Emery, S.M.; Sandine, W.E.; Ayres, J.W. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner. Electrolyte Metab. 1996, 22, 92–96.
|
[47] |
Zou, C.; Lu, Z.Y.; Wu, Y.C.; Yang, L.H.; Su, G.B.; Jie, X.N.; Liu, X.S. Colon may provide new therapeutic targets for treatment of chronic kidney disease with Chinese medicine. Chin. J. Integr. Med. 2013, 19, 86–91.
|
[48] |
Zeng, Y.Q.; Dai, Z.H.; Lu, F.H.; Lu, Z.Y.; Liu, X.S.; Chen, C.; Qu, P.H.; Li, D.C.; Hua, Z.S.; Qu, Y.N.; Zou, C. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease. Oncotarget. 2016, 7, 17468–17478.
|
[49] |
Ji, C.L.; Lu, F.H.; Wu, Y.C.; Lu, Z.Y.; Mo, Y.N.; Han, L.J.; Lin, Q.Z.; Liu, X.S.; Zou, C. Rhubarb enema increasing short-chain fatty acids that improves the intestinal barrier disruption in CKD may be related to the regulation of gut dysbiosis. BioMed Res. Int. 2022, 2022, 1896781.
|
[50] |
Zou, C.; Wu, Y.C.; Lin, Q. Effects of Chinese herbal enema therapy combined basic treatment on BUN, SCr, UA, and IS in chronic renal failure patients. Chin. J. Integr. Tradit. West. Med. 2012, 9, 1192–1195.
|
[51] |
Ji, C.L.; Li, Y.; Mo, Y.N.; Lu, Z.Y.; Lu, F.H.; Lin, Q.Z.; Liu, X.S.; Zou, C.; Wu, Y.C. Rhubarb enema decreases circulating trimethylamine N-oxide level and improves renal fibrosis accompanied with gut microbiota change in chronic kidney disease rats. Front. Pharmacol. 2021, 12, 780924.
|
[52] |
Lei, Y.; Ru, X.; Chen, X.J. Clinical Efficacy of Self-made Chinese Herbal Enema in Treating Stage 3-4 Chronic Kidney Disease and Its Effect on Inflammatory Factor Levels. J. Hunan Normal. Univ (Medical Edition). 2022, 2, 195–198.
|
[53] |
Chen, J.; Zheng, Y.; Liao, L.; Liu, W.; Guo, Y.; Duan, L.; Lu, J. Retention Enema of Reducing Toxin and Stasis for the Treatment of Renal Insufficiency in Toxin-Stasis Syndrome. Chin. J. Tradit. Chin. Med. 2021, 1, 171–175.
|
[54] |
Ji, C.L.; Deng, Y.S.; Yang, A.C.; Lu, Z.Y.; Chen, Y.; Liu, X.S.; Han, L.J.; Zou, C.A. Rhubarb enema improved colon mucosal barrier injury in 5/6 nephrectomy rats may associate with gut microbiota modification. Front. Pharmacol. 2020, 11, 1092.
|
[55] |
Zhang, Q.; Li, T.X.; Huang, X.Y.; Yan, P.; Shi, K.F.; Wang, X.; Hou, H.L. Influence of Traditional Chinese Medicine Colonic Dialysis on Intestinal Microecology in Patients with Dampness and Blood Stasis Syndrome of Chronic Kidney Disease Stage 3-4. Chin. J. Mod. Drug Appl. 2023, 5, 155–159.
|
[56] |
Ding, B.M.; Liang, X.P.; Shen, Y.; Shi, W. Effects of Heluo Jiangzhuo Decoction Retention Enema Combined with Colon Dialysis on Micro-inflammatory State, Renal Function,and Serum Ferritin in Patients with Chronic Kidney Disease and Turbidity and Stagnation Disorder. Hebei J. Tradit. Chin. Med. 2019, 12, 1799–1804.
|
[57] |
Zhou, S.Q.; Lu, L.J.; Liu, M.S.; Hu, J.C.; Liao, D.L. Treatment of 42 cases of stage 4 chronic kidney disease with spleen-kidney qi deficiency and damp-heat internal obstruction type using modified Banxia Xiexin Tang combined with traditional Chinese medicine enema. J. Fujian Univ. Tradit. Chin. Med. 2018, 6, 23–24, 27.
|
[58] |
Guo, J.H.; Zhou, L.; Jiang, C.B.; Bao, X.X.; Sun, W. Clinical study of combined use of Yishen Qingli Formula and Heluo Xiezhuo Formula with traditional Chinese medicine enema in the treatment of 45 cases of stage 4 chronic kidney disease. J. Jiangsu Univ. Tradit. Chin. Med. 2019, 10, 39–41.
|
[1] | 吴悔, 宁港, 李波男, 周兴. Nrf2对睾丸微环境的影响及其在男性疾病中的研究进展[J]. 中国药学(英文版), 2023, 32(7): 513-526. |
[2] | 韩茹, 安雅晶, 赵荣生. α-酮酸对慢性肾脏病患者的附加作用: 一项随机对照试验的系统评价和meta分析[J]. 中国药学(英文版), 2017, 26(1): 63-75. |
[3] | 陈美婉, 谭雯, 王胜鹏, 钟章锋, 王一涛*. 水飞蓟素纳米传递系统的研究进展[J]. , 2011, 20(5): 442-446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||