[1] Nicolai, T. Environmental air pollution and lung disease in children. Monaldi. Arch. Chest Dis. 1999, 54, 475-478.
[2] Katikireddi, S.V. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2015, 388, 1545-1602.
[3] Jones, M. Tailoring of corticosteroids in COPD management. Curr. Respir. Care Rep. 2014, 3, 121-132.
[4] Elks, J. The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. 2014, 186, 1011.
[5] Azouz, W.; Chetcuti, P.; Hosker, H.S.; Saralaya, D.; Stephenson, J. The inhalation characteristics of patients when they use different dry powder inhalers. J. Aerosol Med. Pulm. D. 2015, 26, 35-42.
[6] Zhang, P.R.; Tu, Y.F.; Wang, S.; Wang, Y.H.; Xie, Y.; Li, M.; Jin, Y.G. Preparation and characterization of budesonide-loaded solid lipid nanoparticles for pulmonary delivery. J. Chin. Pharm. Sci. 2011, 20, 361-368.
[7] Hadinoto, K.; Phanapavudhikul, P.; Kewu, Z.; Tan, R.B. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. Int. J. Pharm. 2007, 333, 187-198.
[8] Gelamo, E.L.; Silva, C.H.; Imasato, H.; Tabak, M. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim. Biophys. Acta. 2002, 1594, 84.
[9] Sung, J.C.; Pulliam, B.L.; Edwards, D.A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007, 25, 563-570.
[10] Xie, Y.; Wang, Y.H.; Liu, C.; Tu, Y.F.; Ding, Y.; Xu, H.F. One interferon for pulmonary administration - a hollow nano-albumin aggregated particles. China: ZL 201310141203.8[P].
[11] Alder, B.J.; Wainwright, T.E. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys. 1959, 31, 459.
[12] Lin, S.H.; Cui, W.; Wang, G.L; Meng, S.; Liu, Y.C.; Jin, H.W.; Zhang, L.R.; Xie, Y. Combined computational and experimental studies of molecular interactions of albuterol sulfate with bovine serum albumin for pulmonary drug nanoparticles. Drug Des. Devel. Ther. 2016, 10, 2973-2987.
[13] Luo, Q.; Wang, Y.H.; Yang, H.G.; Liu, C.; Ding, Y.; Xu, H.F.; Wang, Q.; Liu, Y.C.; Xie, Y. Modeling the Interaction of Interferon α-1b to Bovine Serum Albumin as a Drug Delivery System. J. Phys. Chem. B. 2014, 118, 8566-8574.
[14] Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell. J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003, 24, 1999-2012.
[15] Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935.
[16] Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa-A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54, 1951-1962.
[17] Wang, Y.B.; Wang, J.C.; Meng, M.; Zhang, H. Preparation and evaluation of docetaxel-loaded albumin nanoparticles for intravenous administration. J. Chin. Pharm. Sci. 2010, 19, 214-222.
[18] Hao, H.; Ma, Q.; Huang, C.; He, F.; Yao, P. Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int. J. Pharm. 2013, 444, 77-84.
[19] Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm. 2000, 194, 91-102.
[20] Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012, 28, 2074-2075.
[21] Lobanov, M.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. 2008, 42, 701-706.
[22] Falsafi-Zadeh, S.; Karimi, Z.; Galehdari, H. VMD DisRg: New User-Friendly Implement for calculation distance and radius of gyration in VMD program. Bio. Information. 2012, 8, 341-343.
[23] Grater, F.; Schwarzl, S.M.; Dejaegere, A.; Fischer, S.; Smith, J.C. Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics. J. Phys. Chem. B. 2005, 109, 10474-10483.
[24] Shooshtary, S.; Behtash, S.; Nafisi, S. Arsenic trioxide binding to serum proteins. J. Photochem. Photobiol. B. 2015, 148, 31-36.
[25] Yang, F.; Zhang, Y.; Liang, H. Interactive Association of Drugs Binding to Human Serum Albumin. Int. J. Mol. Sci. 2014, 15, 3580-3595.
[26] Joseph, K.S.; Moser, A.C.; Basiaga, S.B.G.; Schiel, J.E.; Hage, D.S. Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin Characterization by high-performance affinity chromatography. J. Chromatogr. A. 2009, 1216, 3492-3500.
[27] Conrad, M.L.; Moser, A.C.; Hage, D.S. Evaluation of indole-based probes for high-throughput screening of drug binding to human serum albumin: Analysis by high-performance affinity chromatography. J. Sep. Sci. 2009, 32, 1145-1155.
[28] Simard, J.R.; Zunszain, P.A.; Ha, C.E.; Yang, J.S.; Bhagavan, N.V.; Petitpas, I.; Curry, S.; Hamilton, J.A. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. P. Natl. Acad. Sci. 2005, 102, 17958-17963.
[29] Simard, J.R.; Zunszain, P.A.; Hamilton, J.A.; Curry, S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol. 2006, 361, 336-351.
[30] Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int. J. Pharm. 1998, 168, 221-229.
[31] Vishnu, P.; Roy, V. Safety and efficacy of nab-paclitaxel in the treatment of patients with breast cancer. Breast Cancer (Auckl). 2011, 5, 53-65.
[32] Edwards, D.A; Hanes, J.; Caponetti, G.; Hrkach, J.; Ben-Jebria, A.; Eskew, M.L; Mintzes, J.; Deaver, D.; Lotan, N.; Langer, R.; Large porous particles for pulmonary drug delivery. Science. 1997, 276, 1868-1871.
[33] Gharse, S.; Fiege, J. Large porous hollow particles: lightweight champions of pulmonary drug delivery. Curr. Pharm. Des. 2016, 22, 2463-2469.
[34] Anton, N.; Jakhmola, A.; Vandamme, T.F. Trojan microparticles for drug delivery. Pharmaceutics. 2012, 4, 1-25. |