Journal of Chinese Pharmaceutical Sciences ›› 2019, Vol. 28 ›› Issue (10): 673-686.DOI: 10.5246/jcps.2019.10.064
• Reviews • Next Articles
Wenxiu Xin*, Qilu Fang, Jiao Sun, Sisi Kong, Lingya Chen, Ping Huang*
Received:
2019-04-16
Revised:
2019-06-18
Online:
2019-10-31
Published:
2019-07-21
Contact:
Tel.: +86-571-88122438; +86-571-88122118, E-mail: xinwx@zjcc.org.cn; huangping1841@zjcc.org.cn
About author:
Dr. Wenxiu Xin graduated from Shandong Normal University in 2009 with a major in pharmaceutical engineering. She was admitted to College of Pharmaceutical Sciences in Zhejiang University in 2009 and received his PhD degree in pharmacology in 2014. Since 2014, she has worked in the pharmacy department of Zhejiang Cancer Hospital, successively as pharmacist (2014) and chief pharmacist (2016). Over these years, she has specialized in the research of anti-tumor pharmacodynamics research of traditional Chinese medicine. She has published 16 associated papers in domestic and international journals as the first author or correspondent author, including 5 SCI papers, and presided over one National Natural Science Foundation of China as well as one Zhejiang Natural Science Foundation.
Supported by:
Chinese Medicine Research Program of Zhejiang Province (Grant No. 2016ZA035), Projects of Medical and Health Technology Program in Zhejiang Province (Grant No. 2016KYA053), Zhejiang Provincial Association of Integrative Medicine Research Fund Project (Grant No. 2016LYK020).
CLC Number:
Supporting:
Wenxiu Xin, Qilu Fang, Jiao Sun, Sisi Kong, Lingya Chen, Ping Huang. Anticancer activity of Isoliquiritigenin: biological effects and molecular mechanisms[J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(10): 673-686.
[1] Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394-424.
[2] Das, T.; Sa, G.; Saha, B.; Das, K. Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol. Cell. Biochem. 2010, 336, 85-95.
[3] Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem. 2018, 144, 582-594.
[4] Pistollato, F.; Calderón Iglesias, R.; Ruiz, R.; Aparicio, S.; Crespo, J.; Dzul Lopez, L.; Giampieri, F.; Battino, M. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett. 2017, 411, 191-200.
[5] Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients. 2017, 9, E728.
[6] Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients. 2016, 8, 156.
[7] Peng, F.; Du, Q.H.; Peng, C.; Wang, N.; Tang, H.L.; Xie, X.M.; Shen, J.G.; Chen, J.P. A review: the pharmacology of isoliquiritigenin. Phytother. Res. 2015, 29, 969-977.
[8] Ii, T.; Satomi, Y.; Katoh, D.; Shimada, J.; Baba, M.; Okuyama, T.; Nishino, H.; Kitamura, N. Induction of cell cycle arrest and p21(CIP1/WAF1) expression in human lung cancer cells by isoliquiritigenin. Cancer Lett. 2004, 207, 27-35.
[9] Wang, K.L.; Hsia, S.M.; Chan, C.J.; Chang, F.Y.; Huang, C.Y.; Bau, D.T.; Wang, P.S. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets. 2013, 17, 337-349.
[10] Zhang, B.Y.; Lai, Y.; Li, Y.F.; Shu, N.; Wang, Z.; Wang, Y.P.; Li, Y.S.; Chen, Z.J. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol. 2018, 821, 57-67.
[11] Tian, T.; Sun, J.P.; Wang, J.X.; Liu, Y.C.; Liu, H.T. Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells. Oncol. Lett. 2018, 16, 6133-6139.
[12] Zhao, H.; Yuan, X.; Li, D.F.; Chen, H.M.; Jiang, J.T.; Wang, Z.P.; Sun, X.L.; Zheng, Q.S. Isoliquiritigen enhances the antitumour activity and decreases the genotoxic effect of cyclophosphamide. Molecules. 2013, 18, 8786-8798.
[13] Wang, Z.Y.; Wang, N.; Liu, P.X.; Chen, Q.J.; Situ, H.L.; Xie, T.; Zhang, J.X.; Peng, C.; Lin, Y.; Chen, J.P. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget. 2014, 5, 7013-7026.
[14] Sun, C.; Zhang, H.; Ma, X.F.; Zhou, X.; Gan, L.; Liu, Y.Y.; Wang, Z.H. Isoliquiritigenin enhances radiosensitivity of HepG2 cells via disturbance of redox status. Cell Biochem. Biophys. 2013, 65, 433-444.
[15] Wu, C.H.; Chen, H.Y.; Wang, C.W.; Shieh, T.M.; Huang, T.C.; Lin, L.C.; Wang, K.L.; Hsia, S.M. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget. 2016, 7, 73432-73447.
[16] Safdari, Y.; Khalili, M.; Ebrahimzadeh, M.A.; Yazdani, Y.; Farajnia, S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol. Res. 2015, 93, 1-10.
[17] Jin, H.; Seo, G.S.; Lee, S.H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspase-8 activation in colorectal cancer cells. Eur. J. Pharmacol. 2018, 841, 90-97.
[18] Jung, S.K.; Lee, M.H.; Lim, D.Y.; Kim, J.E.; Singh, P.; Lee, S.Y.; Jeong, C.H.; Lim, T.G.; Chen, H.Y.; Chi, Y.I.; Kundu, J.K.; Lee, N.H.; Lee, C.C.; Cho, Y.Y.; Bode, A.M.; Lee, K.W.; Dong, Z.G. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J. Biol. Chem. 2014, 289, 35839-35848.
[19] Zhang, X.R.; Wang, S.Y.; Sun, W.; Wei, C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep. 2018, 18, 3429-3436.
[20] Si, L.L.; Yang, X.H.; Yan, X.Y.; Wang, Y.M.; Zheng, Q.S. Isoliquiritigenin induces apoptosis of human bladder cancer T24 cells via a cyclin-dependent kinase-independent mechanism. Oncol. Lett. 2017, 14, 241-249.
[21] Xiang, S.J.; Chen, H.J.; Luo, X.J.; An, B.C.; Wu, W.F.; Cao, S.W.; Ruan, S.F.; Wang, Z.X.; Weng, L.D.; Zhu, H.X.; Liu, Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. J. Exp. Clin. Cancer Res. 2018, 37, 184.
[22] Sun, C.; Wang, Z.H.; Liu, X.X.; Yang, L.N.; Wang, Y.L.; Liu, Y.; Mao, A.H.; Liu, Y.Y.; Zhou, X.; Di, C.X.; Gan, L.; Zhang, H. Disturbance of redox status enhances radiosensitivity of hepatocellular carcinoma. Am. J. Cancer Res. 2015, 5, 1368-1381.
[23] Reddy, B.S. Studies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ. Mol. Mutagen. 2004, 44, 26-35.
[24] Baba, M.; Asano, R.; Takigami, I.; Takahashi, T.; Ohmura, M.; Okada, Y.; Sugimoto, H.; Arika, T.; Nishino, H.; Okuyama, T. Studies on cancer chemoprevention by traditional folk medicines XXV. Inhibitory effect of isoliquiritigenin on azoxymethane-induced murine colon aberrant crypt focus formation and carcinogenesis. Biol. Pharm. Bull. 2002, 25, 247-250.
[25] Wu, M.N.; Wu, Y.Q.; Deng, B.G.; Li, J.S.; Cao, H.Y.; Qu, Y.; Qian, X.L.; Zhong, G.S. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget. 2016, 7, 85318-85331.
[26] Zhao, H.X.; Zhang, X.H.; Chen, X.W.; Li, Y.; Ke, Z.Q.; Tang, T.; Chai, H.Y.; Guo, A.M.; Chen, H.L.; Yang, J. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol. Appl. Pharmacol. 2014, 279, 311-321.
[27] Zorko, B.A.; Pérez, L.B.; De Blanco, E.J. Effects of ILTG on DAPK1 promoter methylation in colon and leukemia cancer cell lines. Anticancer. Res. 2010, 30, 3945-3950.
[28] Chin, Y.W.; Jung, H.A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem. 2007, 55, 4691-4697.
[29] Takahashi, T.; Takasuka, N.; Iigo, M.; Baba, M.; Nishino, H.; Tsuda, H.; Okuyama, T. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci. 2004, 95, 448-453.
[30] Lee, Y.M.; Lim, D.Y.; Choi, H.J.; Jung, J.I.; Chung, W.Y.; Park, J.H. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J. Med. Food. 2009, 12, 8-14.
[31] Kanazawa, M.; Satomi, Y.; Mizutani, Y.; Ukimura, O.; Kawauchi, A.; Sakai, T.; Baba, M.; Okuyama, T.; Nishino, H.; Miki, T. Isoliquiritigenin inhibits the growth of prostate cancer. Eur. Urol. 2003, 43, 580-586.
[32] Park, I.; Park, K.K.; Park, J.H.; Chung, W.Y. Isoliquiritigenin induces G2 and M phase arrest by inducing DNA damage and by inhibiting the metaphase/anaphase transition. Cancer Lett. 2009, 277, 174-181.
[33] Shukla, S.K.; Gebregiworgis, T.; Purohit, V.; Chaika, N.V.; Gunda, V.; Radhakrishnan, P.; Mehla, K.; Pipinos, I.I.; Powers, R.; Yu, F.; Singh, P.K. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab. 2014, 2, 18.
[34] Liu, L.; Gong, L.S.; Zhang, Y.D.; Li, N.F. Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus. Exp. Ther. Med. 2013, 5, 338-342.
[35] Chen, X.Y.; Li, D.F.; Han, J.C.; Wang, B.; Dong, Z.P.; Yu, L.N.; Pan, Z.H.; Qu, C.J.; Chen, Y.; Sun, S.G.; Zheng, Q.S. Reprogramming induced by isoliquiritigenin diminishes melanoma cachexia through mTORC2-AKT-GSK3β signaling. Oncotarget. 2017, 8, 34565-34575.
[36] Chen, X.Y.; Yang, M.; Hao, W.J.; Han, J.C.; Ma, J.; Wang, C.X.; Sun, S.G.; Zheng, Q.S. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene. 2016, 592, 86-98.
[37] Chen, X.Y.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.L.; Zhao, H.; Liu, L.L.; Wang, Y.M.; Wang, Z.H.; Zheng, Q.S. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid. Med. Cell Longev. 2012, 2012, 534934.
[38] Li, D.F.; Wang, Z.H.; Chen, H.M.; Wang, J.Y.; Zheng, Q.S.; Shang, J.; Li, J. Isoliquiritigenin induces monocytic differentiation of HL-60 cells. Free Radic. Biol. Med. 2009, 46, 731-736.
[39] Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell. 2004, 117, 699-711.
[40] Chen, X.Z.; Wu, Y.P.; Jiang, Y.F.; Zhou, Y.; Wang, Y.X.; Yao, Y.Q.; Yi, C.; Gou, L.T.; Yang, J.L. Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J. Mol. Med. 2012, 90, 1311-1319.
[41] Jung, J.I.; Chung, E.; Seon, M.R.; Shin, H.K.; Kim, E.J.; Lim, S.S.; Chung, W.Y.; Park, K.K.; Park, J.H. Isoliquiritigenin (ISL) inhibits ErbB3 signaling in prostate cancer cells. Biofactors. 2006, 28, 159-168.
[42] Wang, Z.Y.; Wang, N.; Han, S.W.; Wang, D.M.; Mo, S.L.; Yu, L.Z.; Huang, H.; Tsui, K.; Shen, J.G.; Chen, J.P. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One. 2013, 8, e68566.
[43] Iwashita, K.; Kobori, M.; Yamaki, K.; Tsushida, T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci. Biotechnol. Biochem. 2000, 64, 1813-1820.
[44] Hsu, Y.L.; Chia, C.C.; Chen, P.J.; Huang, S.E.; Huang, S.C.; Kuo, P.L. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells. Mol. Nutr. Food Res. 2009, 53, 826-835.
[45] Zhao, S.P.; Chang, H.G.; Ma, P.J.; Gao, G.J.; Jin, C.L.; Zhao, X.L.; Zhou, W.K.; Jin, B.Z. Inhibitory effect of DNA topoisomerase inhibitor isoliquiritigenin on the growth of glioma cells. Int. J. Clin. Exp. Pathol. 2015, 8, 12577-12582.
[46] Hirchaud, F.; Hermetet, F.; Ablise, M.; Fauconnet, S.; Vuitton, D.A.; Prétet, J.L.; Mougin, C. Isoliquiritigenin induces caspase-dependent apoptosis via downregulation of HPV16 E6 expression in cervical cancer Ca Ski cells. Planta Med. 2013, 79, 1628-1635.
[47] Ma, J.; Fu, N.Y.; Pang, D.B.; Wu, W.Y.; Xu, A.L. Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med. 2001, 67, 754-757.
[48] Biagioli, M.; Pifferi, S.; Ragghianti, M.; Bucci, S.; Rizzuto, R.; Pinton, P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium. 2008, 43, 184-195.
[49] Kubota, K.; Lee, D.H.; Tsuchiya, M.; Young, C.S.; Everett, E.T.; Martinez-Mier, E.A.; Snead, M.L.; Nguyen, L.; Urano, F.; Bartlett, J.D. Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. J. Biol. Chem. 2005, 280, 23194-23202.
[50] Yuan, X.; Zhang, B.; Gan, L.; Wang, Z.H.; Yu, B.C.; Liu, L.L.; Zheng, Q.S.; Wang, Z.P. Involvement of the mitochondrion-dependent and the endoplasmic reticulum stress-signaling pathways in isoliquiritigenin-induced apoptosis of HeLa cell. Biomed. Environ. Sci. 2013, 26, 268-276.
[51] Yuan, X.; Yu, B.; Wang, Y.; Jiang, J.; Liu, L.; Zhao, H.; Qi, W.; Zheng, Q. Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Pat. Anticancer Drug Discov. 2013, 8, 191-199.
[52] Yoshida, T.; Horinaka, M.; Takara, M.; Tsuchihashi, M.; Mukai, N.; Wakada, M.; Sakai, T. Combination of isoliquiritigenin and tumor necrosis factor-related apoptosis-inducing ligand induces apoptosis in colon cancer HT29 cells. Environ. Health Prev. Med. 2008, 13, 281-287.
[53] Jung, J.I.; Lim, S.S.; Choi, H.J.; Cho, H.J.; Shin, H.K.; Kim, E.J.; Chung, W.Y.; Park, K.K.; Park, J.H. Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J. Nutr. Biochem. 2006, 17, 689-696.
[54] Hsu, Y.L.; Kuo, P.L.; Chiang, L.C.; Lin, C.C. Isoliquiritigenin inhibits the proliferation and induces the apoptosis of human non-small cell lung cancer a549 cells. Clin. Exp. Pharmacol. Physiol. 2004, 31, 414-418.
[55] Vousden, K.H.; Lu, X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer. 2002, 2, 594-604.
[56] Wang, X.Y.; Simpson, E.R.; Brown, K.A. P53: protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res. 2015, 75, 5001-5007.
[57] Gartel, A.L.; Tyner, A.L. Transcriptional Regulation of the p21(WAF1/CIP1)Gene. Exp. Cell Res. 1999, 246, 280-289.
[58] Gartel, A.L. P21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors. 2009, 35, 161-164.
[59] Zhou, Y.L.; Ho, W.S. Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating p53 and p21 in the A549 non-small cell lung cancer cells. Oncol. Rep. 2014, 31, 298-304.
[60] Zhou, G.S.; Song, L.J.; Yang, B. Isoliquiritigenin inhibits proliferation and induces apoptosis of U87 human glioma cells in vitro. Mol. Med. Rep. 2013, 7, 531-536.
[61] Kim, D.H.; Park, J.E.; Chae, I.G.; Park, G.; Lee, S.; Chun, K.S. Isoliquiritigenin inhibits the proliferation of human renal carcinoma Caki cells through the ROS-mediated regulation of the Jak2/STAT3 pathway. Oncol. Rep. 2017, 38, 575-583.
[62] Li, Y.; Zhao, H.X.; Wang, Y.Z.; Zheng, H.; Yu, W.; Chai, H.Y.; Zhang, J.; Falck, J.R.; Guo, A.M.; Yue, J.; Peng, R.X.; Yang, J. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer. Toxicol. Appl. Pharmacol. 2013, 272, 37-48.
[63] Takahashi, T.; Baba, M.; Nishino, H.; Okuyama, T. Cyclooxygenase-2 plays a suppressive role for induction of apoptosis in isoliquiritigenin-treated mouse colon cancer cells. Cancer Lett. 2006, 231, 319-325.
[64] Peng, F.; Tang, H.L.; Liu, P.; Shen, J.G.; Guan, X.Y.; Xie, X.F.; Gao, J.H.; Xiong, L.; Jia, L.; Chen, J.P.; Peng, C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep. 2017, 7, 9022.
[65] Wang, Y.M.; Ma, J.; Yan, X.Y.; Chen, X.Y.; Si, L.L.; Liu, Y.; Han, J.C.; Hao, W.J.; Zheng, Q.S. Isoliquiritigenin inhibits proliferation and induces apoptosis via alleviating hypoxia and reducing glycolysis in mouse melanoma B16F10 cells. Recent Pat. Anticancer Drug Discov. 2016, 11, 215-227.
[66] White, E.; Mehnert, J.M.; Chan, C.S. Autophagy, metabolism, and cancer. Clin. Cancer Res. 2015, 21, 5037-5046.
[67] Chen, G.; Hu, X.; Zhang, W.; Xu, N.; Wang, F.Q.; Jia, J.; Zhang, W.F.; Sun, Z.J.; Zhao, Y.F. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis. 2012, 17, 90-101.
[68] Chen, H.Y.; Huang, T.C.; Shieh, T.M.; Wu, C.H.; Lin, L.C.; Hsia, S.M. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int. J. Mol. Sci. 2017, 18, E2025.
[69] Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer. 2016, 16, 201-218.
[70] Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 2006, 12, 895-904.
[71] Rashid, M.; Karim, S.; Ali, B.; Khan, S.; Ahmad, M.; Husain, A.; Mishra, R. PI3K signaling pathway targeting by using different molecular approaches to treat cancer. J. Chin. Pharm. Sci. 2017, 26, 621-634.
[72] Li, N.; Yang, L.; Deng, X.N.; Sun, Y.N. Effects of isoliquiritigenin on ovarian cancer cells. Onco. Targets. Ther. 2018, 11, 1633-1642.
[73] Chen, J.; Liu, C.; Yang, Q.Q.; Ma, R.B.; Ke, Y.; Dong, F.; Wu, X.E. Isoliquiritigenin suppresses osteosarcoma U2OS cell proliferation and invasion by regulating the PI3K/akt signalling pathway. Chemotherapy. 2018, 63, 155-161.
[74] Zheng, H.; Li, Y.; Wang, Y.Z.; Zhao, H.X.; Zhang, J.; Chai, H.Y.; Tang, T.; Yue, J.; Guo, A.M.; Yang, J. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol. Appl. Pharmacol. 2014, 280, 10-20.
[75] Kwon, G.T.; Cho, H.J.; Chung, W.Y.; Park, K.K.; Moon, A.; Park, J.H. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J. Nutr. Biochem. 2009, 20, 663-676.
[76] Sun, Z.J.; Chen, G.; Zhang, W.; Hu, X.; Huang, C.F.; Wang, Y.F.; Jia, J.; Zhao, Y.F. Mammalian target of rapamycin pathway promotes tumor-induced angiogenesis in adenoid cystic carcinoma: its suppression by isoliquiritigenin through dual activation of c-Jun NH2-terminal kinase and inhibition of extracellular signal-regulated kinase. J. Pharmacol. Exp. Ther. 2010, 334, 500-512.
[77] Youns, M.; Fu, Y.J.; Zu, Y.G.; Kramer, A.; Konkimalla, V.B.; Radlwimmer, B.; Sültmann, H.; Efferth, T. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics. Naunyn Schmiedebergs Arch. Pharmacol. 2010, 382, 221-234.
[78] Patricia Moreno-Londoño, A.; Bello-Alvarez, C.; Pedraza-Chaverri, J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem. Toxicol. 2017, 109, 143-154.
[79] Lee, C.K.; Son, S.H.; Park, K.K.; Park, J.H.; Lim, S.S.; Chung, W.Y. Isoliquiritigenin inhibits tumor growth and protects the kidney and liver against chemotherapy-induced toxicity in a mouse xenograft model of colon carcinoma. J. Pharmacol. Sci. 2008, 106, 444-451. |
[1] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[2] | Haoxin Du, Qi Bao, Huangqianyu Li, Yichen Zhang, Haishaerjiang Wushouer, Luwen Shi, Xiaodong Guan. Health status of middle-aged and elderly cancer survivors in China [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 744-754. |
[3] | Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 603-615. |
[4] | Wentao Zhu, Wanglong Hong, Miaomiao Zheng, Guoqiang Ma, Aizong Shen. Combination of pembrolizumab and chemotherapy as first-line treatment in advanced triple-negative breast cancer: a cost-effectiveness analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 587-597. |
[5] | Yancong Zhao, Huiyuan Gong, Jinghua Li. Overexpression of hBD3 inhibits cell proliferation, cell cycle, and migration in colon cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 250-259. |
[6] | Changping Lin, Sanyue Wang, Yunguo Xue, Youliu Yu. The effects of midazolam combined with dezocine on laparoscopic appendectomy [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 207-213. |
[7] | Ciyan Peng, Jing Chen, Sini Li, Jianhe Li, Liubao Peng. Evidence-based pharmacoeconomic evaluation of palbociclib in combination with letrozole versus docetaxel in combination with epirubicin in the first-line treatment of advanced breast cancer with epirubicin [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 214-222. |
[8] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[9] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[10] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[11] | Neha Dangi, Shikha Sharma. Cancer chemotherapy with novel bioactive natural products [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(8): 589-607. |
[12] | Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529. |
[13] | Jiaqiong Yang, Ying Liu, Daqing Zong, Jingfeng Zhao. Preliminary study on blood coagulation and hemostatic effect and acute toxicity of Oxalis corniculata L. ethanol extract [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 530-535. |
[14] | Weiping Zhao, Qi Ge, Zijun Ding, Leizhi Pan, Ziqing Gu, Yang Liu, Hua Cai. Network pharmacology and metabolomics-based detection of the potential pharmacological effects of the active components in Chrysanthemum morifolium 'Chuju' [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 412-428. |
[15] | Jianwei Dong, Xuejiao Li, Chen Yang, Yanqing Zhang, Huifang Zhou, Yali Li. The antioxidant activity and total phenolic and total flavonoid contents of Pyracantha fortuneana fruit can be improved by solid-state fermentation with Rhizopus oryzae and Penicillium commune [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 452-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||