Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (9): 720-735.DOI: 10.5246/jcps.2023.09.059
• Original articles • Previous Articles Next Articles
Gedi Zhang1, Gengxin Liu1, Ziyou Yan2,*()
Received:
2023-03-24
Revised:
2023-04-12
Accepted:
2023-05-05
Online:
2023-09-30
Published:
2023-09-30
Contact:
Ziyou Yan
Supporting:
Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735.
[1] |
Zhang, X.Y.; Qiu, H.A.; Li, C.S.; Cai, P.P.; Qi, F.H. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. BioSci. Trends. 2021, 15, 283–298.
|
[2] |
Neha, D.; Shikha, S. Cancer chemotherapy with novel bioactive natural products. J. Chin. Pharm. Sci. 2022, 31, 589.
|
[3] |
Wang, Y.F.; Zheng, Y.; Ku, B.S.; Yao, H.Y.; Yao, G.Y.; Wan, Y.L. Anti-tumor activity of Hedyotis diffusa Willd. in mice. J. Chin. Pharm. Sci. 2013, 22, 272–276.
|
[4] |
Wang, S.; Fu, J.L.; Hao, H.F.; Jiao, Y.N.; Li, P.P.; Han, S.Y. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol. Res. 2021, 170, 105728.
|
[5] |
Wang, S.M.; Long, S.Q.; Deng, Z.Y.; Wu, W.Y. Positive role of Chinese herbal medicine in cancer immune regulation. Am. J. Chin. Med. 2020, 48, 1577–1592.
|
[6] |
Xiang, Y.N.; Guo, Z.M.; Zhu, P.F.; Chen, J.; Huang, Y.Y. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019, 8, 1958–1975.
|
[7] |
Tao, W.W.; Jiang, H.; Tao, X.M.; Jiang, P.; Sha, L.Y.; Sun, X.C. Effects of acupuncture, tuina, Tai Chi, Qigong, and traditional Chinese medicine five-element music therapy on symptom management and quality of life for cancer patients: a meta-analysis. J. Pain Symptom Manag. 2016, 51, 728–747.
|
[8] |
Zhao, Y.M.; Feng, Y.W.; Zhang, L.; Yu, C.H. Research progress in the treatment of uterine leiomyoma with Lichong Decoction. Chin. J. Exp. Tradit. Med. Form. 2021, 27, 228–234.
|
[9] |
Wang, Y.S.; Li, D.H.; Xu, X.; Qian, R.Y.; Zhang, Y.L.; Huang, Y.H.; Geng, J.G.; Zou, X.L.; Han, H.J.; Zhang, W.F. Lichong Decoction reduces Matrix Metalloproteinases-2 expression but increases Tissue Inhibitors of Matrix Metalloproteinases-2 expression in a rat model of uterine leiomyoma. J. Tradit. Chin. Med. 2016, 36, 479–485.
|
[10] |
Wang, W.; Zhang, W.; Li, D.; Qian, R.; Zhu, L.; Liu, Y.; Chen, C. Lichong Decoction inhibits micro-angiogenesis by reducing the expressions of hypoxia inducible factor-1α and vascular endothelial growth factor in hysteromyoma mouse model. J. Tradit. Chin. Med. 2020, 40, 928–937.
|
[11] |
Li, D.H.; Xu, X.; Qian, R.Y.; Geng, J.G.; Zhang, Y.; Xie, X.L.; Wang, Y.S.; Zou, X.L. Effect of Lichong Decoction on expression of Bcl-2 and Bcl-2-associated X protein mRNAs in hysteromyoma model rat. J. Tradit. Chin. Med. 2013, 33, 238–242.
|
[12] |
Li, D.H.; Zhang, Y.L.; Han, H.J.; Geng, J.G.; Xie, X.L.; Zheng, J.B.; Wang, Y.S.; Zou, X.L. Effect of Lichong Decoction on expression of IGF-I and proliferating cell nuclear antigen mRNA in rat model of uterine leiomyoma. J. Tradit. Chin. Med. 2012, 32, 636–640.
|
[13] |
Zhao, S.G.; Zhang, X.F. Zhang Xiaofeng’s experience of use Li Chong Tang’s in treating colorectal cancer. Guangming Tradit. Chin. Med. 2022, 37, 2718–2721.
|
[14] |
Niu, W.H. Research on the mechanism of Jiawei Lichong Decoction in treating hepatocellular carcinoma based on bioinformatics analysis. Henan Univ. Tradit. Chin. Med. 2020.
|
[15] |
Yi, P.J.; Zhang, Z.Y.; Huang, S.Q.; Huang, J.H.; Peng, W.J.; Yang, J.J. Integrated meta-analysis, network pharmacology, and molecular docking to investigate the efficacy and potential pharmacological mechanism of Kai-Xin-San on Alzheimer’s disease. Pharm. Biol. 2020, 58, 932–943.
|
[16] |
Foroutan, F.; Guyatt, G.; Alba, A.C.; Ross, H. Meta-analysis: mistake or milestone in medicine? Heart. 2018, 104, 1559–1561.
|
[17] |
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150.
|
[18] |
Li, X.; Wei, S.Z.; Niu, S.Q.; Ma, X.; Li, H.T.; Jing, M.Y.; Zhao, Y.L. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med. 2022, 144, 105389.
|
[19] |
Wang, Z.Y.; Wang, X.; Zhang, D.Y.; Hu, Y.J.; Li, S. Traditional Chinese medicine network pharmacology: development in new era under guidance of network pharmacology evaluation method guidance. China J. Chin. Mater. Med. 2022, 47, 7–17.
|
[20] |
Hao, L.Y.; Yang, J.Q. Treatment of 30 cases of hysteromyoma with modified Lichong decoction. Jilin J. Tradit. Chin. Med. 2000, 06, 32.
|
[21] |
Li, D.H.; Zhang, W.F.; Liu, X.M.; Zhu, L.J.; Chen, C.; Liu, Y. Observation on the therapeutic effect of "Lizhong Decoction", a traditional Chinese medicine for strengthening the body and removing blood stasis, on hysteromyoma. Liaoning J. Tradit. Chin. Med. 2018, 45, 1653–1656.
|
[22] |
Ye, T.M. Clinical observation on the treatment of 38 cases of women with oligoabdominal syndrome with Jiawei Lichong decoction. J. Guangzhou Med. Coll. 2004, 02, 91–92.
|
[23] |
Zhong, H.L. Clinical observation on the treatment of hysteromyoma of qi deficiency and blood stasis with Lichong decoction plus acupoint application. Jiangxi Univ. Tradit. Chin. Med. 2020.
|
[24] |
Zhou, Q.; Zhou, F.; Zhang, X.H. Clinical study on the treatment of advanced ovarian cancer with Lichong decoction plus or minus TC regimen. New Chin. Med. 2020, 52, 39–43.
|
[25] |
Pei, X.; Du, Y.Q.; Liu, K.J. Clinical Study on the Treatment of Advanced Ovarian Cancer with Lichong Decoction Plus and Minus Formula Combined with Chemotherapy. Liaoning J. Tradit. Chin. Med. 2011, 38, 920–922.
|
[26] |
Shao S.Q. Analysis of the clinical efficacy of Lichong decoction plus minus formula combined with chemotherapy in the treatment of advanced ovarian cancer. Heilongjiang Tradit. Chin. Med. 2020, 49, 30–31.
|
[27] |
Davoodvandi, A.; Shabani Varkani, M.; Clark, C.C.T.; Jafarnejad, S. Quercetin as an anticancer agent: focus on esophageal cancer. J. Food Biochem. 2020, 44, e13374.
|
[28] |
Khan, K.; Javed, Z.; Sadia, H.; Sharifi-Rad, J.; Cho, W.C.; Luparello, C. Quercetin and microRNA interplay in apoptosis regulation in ovarian cancer. Curr. Pharm. Des. 2021, 27, 2328–2336.
|
[29] |
Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratislava Med. J. 2017, 118, 123–128.
|
[30] |
Ghafouri-Fard, S.; Shabestari, F.A.; Vaezi, S.; Abak, A.; Shoorei, H.; Karimi, A.; Taheri, M.; Basiri, A. Emerging impact of quercetin in the treatment of prostate cancer. Biomed. Pharmacother. 2021, 138, 111548.
|
[31] |
Özsoy, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Quercetin-Mediated Apoptosis and Cellular Senescence in Human Colon Cancer. Anticancer Agents Med. Chem. 2020, 20, 1387–1396.
|
[32] |
Wu, H.T.; Lin, J.; Liu, Y.E.; Chen, H.F.; Hsu, K.W.; Lin, S.H.; Peng, K.Y.; Lin, K.J.; Hsieh, C.C.; Chen, D.R. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine. 2021, 81, 153437.
|
[33] |
Zhao, J.; Li, L.; Wang, Z.; Li, L.; He, M.; Han, S.; Dong, Y.; Liu, X.; Zhao, W.; Ke, Y.; Wang, C. Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability. Pharmacol. Res. 2021, 174, 105939.
|
[34] |
Zhang, M.; Wang, R.; Tian, J.; Song, M.Q.; Zhao, R.; Liu, K.D.; Zhu, F.; Shim, J.H.; Dong, Z.G.; Lee, M.H. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J. Cell Mol. Med. 2021, 25, 5560–5571.
|
[35] |
Pandurangan, A.K.; Esa, N.M. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review. Asian Pac. J. Cancer Prev. 2014, 15, 5501–5508.
|
[36] |
Juszczak, A.M.; Wöelfle, U.; Končić, M.Z.; Tomczyk, M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med. Res. Rev. 2022, 42, 1423–1462.
|
[37] |
Wang, F.; Wang, L.; Qu, C.; Chen, L.; Geng, Y.; Cheng, C.; Yu, S.; Wang, D.; Yang, L.; Meng, Z.; Chen, Z. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer. 2021, 21, 396.
|
[38] |
Kim, T.W.; Lee, S.Y.; Kim, M.; Cheon, C.; Ko, S.G. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis. 2018, 9, 875.
|
[39] |
Zhang, Y.M.; Chen, J.Q.; Fang, W.X.; Liang, K.Y.; Li, X.N.; Zhang, F.; Pang, Y.Z.; Fang, G.; Wang, X.N. Kaempferol suppresses androgen-dependent and androgen-independent prostate cancer by regulating Ki67 expression. Mol. Biol. Rep. 2022, 49, 4607–4617.
|
[40] |
Herberts, C.; Murtha, A.J.; Fu, S.; Wang, G.; Schönlau, E.; Xue, H.; Lin, D.; Gleave, A.; Yip, S.; Angeles, A.; Hotte, S.; Tran, B.; North, S.; Taavitsainen, S.; Beja, K.; Vandekerkhove, G.; Ritch, E.; Warner, E.; Saad, F.; Iqbal, N.; Wyatt, A.W. Activating AKT1 and PIK3CA mutations in metastatic castration-resistant prostate cancer. Eur. Urol. 2020, 78, 834–844.
|
[41] |
Deng, T.Y.; Shen, P.; Li, A.M.; Zhang, Z.Y.; Yang, H.L.; Deng, X.J.; Peng, X.M.; Hu, Z.; Tang, Z.B.; Liu, J.H.; Hou, R.T.; Liu, Z.; Fang, W.Y. CCDC65 as a new potential tumor suppressor induced by metformin inhibits activation of AKT1 via ubiquitination of ENO1 in gastric cancer. Theranostics. 2021, 11, 8112–8128.
|
[42] |
Silwal-Pandit, L.; Langerød, A.; Børresen-Dale, A.L. TP53 Mutations in breast and ovarian cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a026252.
|
[43] |
Mu, H.Q.; He, Y.H.; Wang, S.B.; Yang, S.; Wang, Y.J.; Nan, C.J.; Bao, Y.F.; Xie, Q.P.; Chen, Y.H. miR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin. Transl. Oncol. 2020, 22, 111–121.
|
[44] |
Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer. 2001, 37, 9–15.
|
[45] |
Saatci, O.; Huynh-Dam, K.T.; Sahin, O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J. Mol. Med. 2021, 99, 1691–1710.
|
[46] |
Cheng, W.L.; Feng, P.H.; Lee, K.Y.; Chen, K.Y.; Sun, W.L.; Van Hiep, N.; Luo, C.S.; Wu, S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 2021, 22, 12828.
|
[47] |
Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much more than IL-17A: cytokines of the IL-17 family between microbiota and cancer. Front. Immunol. 2020, 11, 565470.
|
[48] |
Li, M.H.; Zhang, R.F.; Li, J.; Li, J.N. The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis. Front. Immunol. 2022, 13, 894445.
|
[49] |
Wang, H.; Wu, J.; Chen, M.; Liu, S.L.; Xu, L.Z. Effect of Modified Lichong Decoction Combined with 5-fluorouracil on Epithelial Interstitial Transformation of Transplanted Tumor Cells in H22 Bearing Mice. Chin. J. Exp. Tradit. Med. Form. 2019, 25, 82–89.
|
[50] |
Wang, H.; Xu, L.Z.; Wang, J.; Sun, Q.M.; Chen, M.; Liu, S.L. Effect of Modified Lichong Tang Combined with 5-fluorouracil on Epithelial Interstitial Transformation of Human HepG2 Liver Cancer Cells. Chin. J. Exp. Tradit. Med. Form. 2019, 25, 14–21.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Haoxin Du, Qi Bao, Huangqianyu Li, Yichen Zhang, Haishaerjiang Wushouer, Luwen Shi, Xiaodong Guan. Health status of middle-aged and elderly cancer survivors in China [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 744-754. |
[4] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[5] | Bo Fan, Xiao Yang, Shuang Hu. Vortex-assisted switchable solvent liquid-phase microextraction for preconcentration of cinnamic acid derivatives in traditional Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 551-559. |
[6] | Wentao Zhu, Wanglong Hong, Miaomiao Zheng, Guoqiang Ma, Aizong Shen. Combination of pembrolizumab and chemotherapy as first-line treatment in advanced triple-negative breast cancer: a cost-effectiveness analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 587-597. |
[7] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[8] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[9] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[10] | Yonghui Ge, Ling Wang, Su Xu, Tianli Jiang, Jinhua Wang. Direct identification of volatile compounds in the artificially cultivated and wild Chinese medicinal materials (Semiliquidambar cathayesis) by headspace-gas chromatography-ion mobility spectrometry [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 392-405. |
[11] | Yancong Zhao, Huiyuan Gong, Jinghua Li. Overexpression of hBD3 inhibits cell proliferation, cell cycle, and migration in colon cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 250-259. |
[12] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[13] | Ciyan Peng, Jing Chen, Sini Li, Jianhe Li, Liubao Peng. Evidence-based pharmacoeconomic evaluation of palbociclib in combination with letrozole versus docetaxel in combination with epirubicin in the first-line treatment of advanced breast cancer with epirubicin [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 214-222. |
[14] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[15] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||